两个摄像头合成一路_正规子群的三个栖所——商群、直积、合成群列

这篇博客探讨了群论中的商群、直积和合成群列的概念,强调正规子群在它们之间的关键作用。通过同态基本定理,解释了如何通过正规子群来分解群,并展示了直积如何体现群的结构。此外,还讨论了合成群列作为分解群的不可再分的方式。这些概念揭示了群结构的深层联系。
摘要由CSDN通过智能技术生成

学习群论,现在有一个疑惑,感觉商群、直积、合成群列这三个概念都能将一个群分解为多个群进行研究。但三者确实又有区别,他们是否有一定联系?

正规子群是三者的维系所在。

商群与正规子群

两个陪集间的乘积一般来说不一定是陪集。但当子群

正规的,我们就有:

这是因为

(某种意义上的可交换性),于是

一但满足这个性质,我们就可以很自然地将群

上的乘法诱导至商集
上去,于是商集
成一群!

更一般地,我们有同态基本定理:

同态基本定理

为群同态,那么
是正规的,且

反之,若

,那么存在一个群
和一个满同态
,其核为

这个定理展现了同态的本质:同态可以将正规子群

作为同态核从
中“分离”出来

假如,

也是正规子群,那么……

直积与正规子群

称为它的子群
直积,如果满足三个条件:

该关系记为:

(当然在加群中,我们称之为直和,记作

根据这个定义,我们很容易发现在自然同态

下:

命题

那么

  • 由同态基本定理
    ,而
    是交换群,交换群必为正规的,于是一定有
  • 在同构
    下,

合成群列与直积分解

无重复、不能再加细的正规子群列即为合成列。设合成列如下:

(以上角标表示序号,希望不要介意)

0f926147aec3ac301dc4b2d61be29a33.png

那么由上述同态基本定理,就可以得到一列同态:

可以视为
对偶映射(将对方的象集映为核),如下图:

d8bab6ed1ded4c1b44c0bd601308e869.png

通过映射

的复合,
可以一路映到

形式上是优美的,但是这么做有什么意义吗?

反过来看,从

又是一个逐步扩张的过程。我们从直积的角度看,将会更加明了其内在结构:

且这样的分解不能更细;

,立刻有迭代关系

由直积定义有:

经过有限次分解自然有合成列:

回过头再看看我们当初一系列同态映射

,相当于干了这么一回事:

总结

从正规子群与同态映射可以看出这三者的联系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值