本文是LLM系列文章,针对《β-DPO: Direct Preference Optimization with Dynamic β》的翻译。
摘要
直接偏好优化 (DPO) 已成为训练大型语言模型 (LLM) 以符合人类偏好的一种引人注目的方法。但是,DPO 的性能对其权衡参数β的微调以及首选项数据的质量很敏感。我们分析了β和数据质量对 DPO 的影响,发现最佳 β 值随成对数据的信息量而变化。为了解决静态β值的局限性,我们引入了一种新的框架,该框架可以根据数据质量考虑在批次级别动态校准β。此外,我们的方法结合了β引导的数据过滤,以防止异常值的影响。通过实证评估,我们证明我们的动态β调整技术显着提高了 DPO 在一系列模型和数据集中的性能,为使 LLM 与人类反馈保持一致提供了更强大和适应性更强的训练范式。该代码可在 https://github.com/junkangwu/beta-DPO 获取。