β-DPO: Direct Preference Optimization with Dynamic β

本文是LLM系列文章,针对《β-DPO: Direct Preference Optimization with Dynamic β》的翻译。

β-DPO:使用动态β进行直接首选项优化

摘要

直接偏好优化 (DPO) 已成为训练大型语言模型 (LLM) 以符合人类偏好的一种引人注目的方法。但是,DPO 的性能对其权衡参数β的微调以及首选项数据的质量很敏感。我们分析了β和数据质量对 DPO 的影响,发现最佳 β 值随成对数据的信息量而变化。为了解决静态β值的局限性,我们引入了一种新的框架,该框架可以根据数据质量考虑在批次级别动态校准β。此外,我们的方法结合了β引导的数据过滤,以防止异常值的影响。通过实证评估,我们证明我们的动态β调整技术显着提高了 DPO 在一系列模型和数据集中的性能,为使 LLM 与人类反馈保持一致提供了更强大和适应性更强的训练范式。该代码可在 https://github.com/junkangwu/beta-DPO 获取。

1 引言

2 相关工作

3 前言

4 方法

5 实验

6 结论和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值