tensorflow残差网络高光谱图像分类_光谱-空间高光谱图像分类的深层金字塔残差网络...

该博客介绍了利用Deep Pyramidal Residual Networks进行光谱-空间高光谱图像分类的研究。文章详细阐述了残差单元的结构,并对比了传统残差网络,提出金字塔形瓶颈残差网络在输入和输出通道数上的差异,以增强光谱-空间属性的学习。实验结果显示,这种方法在多个数据集上表现优越。
摘要由CSDN通过智能技术生成

论文地址:Deep Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification

代码地址:https://github.com/mhaut/pResNet-HSI

1、介绍

在以往的研究中提出了各种不同类型的无监督和监督方法对

equation?tex=HSI 数据进行分类,但是由于消失梯度问题导致信息丢失,用
equation?tex=HSI 数据训练非常深的
equation?tex=CNN 仍然有困难。因此残差网络(
equation?tex=ResNet )被提出来发现
equation?tex=HSI 数据中的高分辨光谱-空间特征。本文提出了一种新的基于金字塔瓶颈残差单元的
equation?tex=ResNet 模型,以实现快速、准确的
equation?tex=HSI 数据分析和分类,同时利用光谱和空间信息。新的深度模型是由几个堆叠卷积层组成的,它们具有瓶颈体系结构,其中输出层大于输入层。这样,原始
equation?tex=HSI 立方体中的光谱通道数在每个块上一步一步地增加,形成金字塔的错觉。并且随着残差单元的加深,允许从
equation?tex=HSI 立方体中学习更健壮的光谱-空间表示,提取更多的特征图。结果表明,该模型不仅优于光谱-空间卷积神经网络,而且优于基线
equation?tex=HSI-ResNet

2、方法

2.1 残差单元

作者给出不同残差单元的结构如下:

13375f8e48f19a5a272346e8ebb0822f.png

相对于传统的残差单元,金字塔形瓶颈残差网络在输入和输出的通道数上做了改变,输出维度大于输入维度。

2.2 金字塔形瓶颈残差网络结构

357da75defadf3ca5e482617ec612ebf.png

输入数据

equation?tex=p_%7Bi%2Cj%7D%5Cin+R%5E%7BN%5Ctimes+d%5Ctimes+d%7D ,经过以下模块得到输出:

(1)输入模块

equation?tex=C :由
equation?tex=CONV
equation?tex=BATCH-NORM 层组成

(2)金字塔模块

equation?tex=P_%7B1%7D ,
equation?tex=P_%7B2%7D ,
equation?tex=P_%7B3%7D :每个金字塔模块有三个瓶颈残差单元组成
equation?tex=B_%7B1%7D ,
equation?tex=B_%7B2%7D ,
equation?tex=B_%7B3%7D ,每个
equation?tex=B 可以总结为
equation?tex=BATCH-NORM_%7B1%7D --
equation?tex=CONV_%7B1%7D --
equation?tex=BATCH-NORM_%7B2%7D --
equation?tex=CONV_%7B2%7D --
equation?tex=BATCH-NORM_%7B3%7D --
equation?tex=CONV_%7B3%7D --
equation?tex=ReLU 。为了利用HSI数据中包含的光谱-空间信息,不同残差单元的不同的
equation?tex=CONV 层使用特定大小的卷积核。注意,模块
equation?tex=P_%7B1%7D 保持空间特征大小,将每个
equation?tex=B_%7Bj%7D%5E%7B%281%29%7D 的所有
equation?tex=CONV 层的卷积操作步长设置为
equation?tex=s =1;模块
equation?tex=P_%7B2%7D
equation?tex=P_%7B3%7D 实施了不同的机制对输入数据进行下采样。在这两个模块的第一个残差单元
equation?tex=B_%7B1%7D%5E%7B%282%29%7D
equation?tex=B_%7B1%7D%5E%7B%283%29%7D中,
equation?tex=CONV_%7B2%7D 层卷积操作的步长设置为
equation?tex=s =2,并且在单元最后增加下采样层。每个残差单元输出的特征图的维度(通道数)由下列公式计算得到:

5e634736c7bb24a3a19148cf6426d5e5.png

即输出特征图的通道数大于输入的通道数。

(3)输出模块

equation?tex=Output :首先进行下采样,然后重塑成向量输入FC层得到分类结果。

下表给出了所有

equation?tex=CONV 层使用的卷积核的大小:

6f73995ff85d87013f5f4ccf6fc44626.png

3、实验结果

bfee5d64f3778095c61324ea82f40b68.png

91bdbb48e4a92916fdb6823373de459a.png

427c802c3f5b0051935a1cc8a3cd90a4.png

在以上三种数据集上,本文所提出的方法的效果明显优于目前的主流方法。

4、结论

本文得出的主要结论之一是在对高光谱数据进行分类时使用光谱-空间信息的相关性,新提出的办法能够发现高度描述性的光谱-空间分类特征,也就是说,在所有残差单元逐步增加特征图的通道维度可以得到更好的光谱-空间属性,使分类结果得到改进。其二是用于训练的数据量,对于使用不同百分比的训练数据的其他最佳模型,提出的方法都可以使性能得到进一步改进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值