ef多条件映射_简单易懂的动力系统:庞加莱映射定义的周期性演化

本文介绍了庞加莱映射的概念,它是动力系统研究中的重要工具,用于分析微分方程组的局部性态。以Vanderpol方程为例,阐述了如何通过庞加莱映射定义周期轨,并讨论了极限集和李雅普诺夫函数在确定吸引性和排斥性中的作用。同时,文章提及机器学习在神经科学中的应用,指出机器学习是理解复杂系统如神经信号的重要途径。
摘要由CSDN通过智能技术生成

下一篇文章可能是关于机器学习的,因为我最近发现,尽管我对于机器学习的一些理论达到了能说会道的地步,但是实际操作起来,却是这里不会,那里也不会。以致于自己弄出来的一个数据集,利用梯度下降法得出来的参数,虽然和最小二乘法得到的参数是一样的,但是根本没办法解释图像的非线性。所以我最近可能会在这一方面多看一点。

说起来,机器学习也算是神经学的预备知识,因为前沿的文献很多都是通过机器学习的方法来解决神经信号方面的问题的。最突出的就是最近谷歌做的对果蝇大脑进行全成像的报道,其内容几乎绝大部分都是基于机器学习的,换句话说,是通过新的神经网络算法得到的。

不说废话了,从这里开始介绍。上一篇文章中陈诺的吸引集和吸引子相关的内容可能要留到下一篇关于动力系统的文章里面来讲了。大致的顺序是这样的:庞加莱映射、周期轨、极限集、周期轨的李雅普诺夫函数。

1,庞加莱映射

在上一篇文章中,我们较为简略地介绍了流与李雅普诺夫指数的特性。在这里,我们基于流本身,讲一种特殊的映射:庞加莱映射

流,形象化地说,就是空间中的一条曲线,微分方程的一组解对应了空间中一条曲线。这条曲线的去向是未知的,但是很显然,当一个方程确定下来,以及给定了初始点以后,这个流就确定下来了。

这个流可能孤独地往前走,走向了无穷远处,也可能在某一个地方开始弯折,朝着原来的反方向前进。这些都是由微分方程组决定的。接下来,我们引入一个例子,这个例子有非常好看的相图,而且,在我们这一篇文章的叙述当中,它非常完美地可以在每一处概念解释地时候引入。

这个微分方程组被称为Vanderpol方程组。它具有如下形式:

其对应的相图如图所示,横坐标表示

,纵坐标表示

95f28fe9d1230e489dfc2a4b7cb2d60a.png
vanderpol方程的相图。初始点为(0,1),(0,-1),(0,5),(0,-5),(-3,4),(3,-4)

从这种图中,我们可以简略地看出Vanderpol方程的性态:它的流最终趋向于一个环,这个环虽然不是圆环,但是可以看出它是由闭合曲线构成的。在这里,我们要说的是,虽然数值模拟不能够完美地,毫无瑕疵地反应一个方程组的相图,但是,对于复杂度不高的方程组(所谓复杂度不高的方程组,是指其混沌特性在一定的可控范围内,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值