流(flow)、庞加莱(Poincare)映射、周期轨道

本文深入探讨了微分方程的解——流,介绍了庞加莱映射的直观理解与数学定义,揭示了周期轨道的概念。通过举例和解析,阐述了庞加莱映射在连续运动轨迹分析中的应用,强调了其在周期运动和混沌系统研究中的重要性。
摘要由CSDN通过智能技术生成

  考虑自治方程
d x 1 d t = f ( x 1 , x 2 ) \frac{dx_{1}}{dt}=f(x_{1},x_{2}) dtdx1=f(x1,x2)
d x 2 d t = g ( x 1 , x 2 ) \frac{dx_{2}}{dt}=g(x_{1},x_{2}) dtdx2=g(x1,x2)
  其中 ( f ( x 1 , x 2 ) , g ( x 1 , x 2 ) ) (f(x_{1},x_{2}),g(x_{1},x_{2})) (f(x1,x2),g(x1,x2))大多数情况下表示连续函数,他们的光滑性足够好。在上式中坐标分别为 x 1 , x 2 x_{1},x_{2} x1,x2,它们对时间t的导数存在这样的函数关系。之后用无角标 x x x表示向量,即 x = ( x 1 , x 2 ) x=(x_{1},x_{2}) x=(x1,x2)。然后,我们用 F ( x ) F(x) F(x)表示一个 R 2 ⇒ R 2 R^{2}\Rightarrow R^{2} R2R2的映射,用 F 1 ( x 1 , x 2 ) F_{1}(x_{1},x_{2}) F1(x1,x2), 来表示这个函数向量的第一个分量。在这里,我们用大写的字母表示一个函数向量,用小写或者脚标的形式来表示一个分量。

1.连续性、场、流

  微分方程的解如果可以用一定的解析形式表达出来,这样的解称为解析解。但是基本我们见到的大多数方程解析解不存在,我们就需要用理论上无限精度的数值计算来求解微分方程,这样的解称为数值解。对于微分方程的解统称为流(flow)
  在流之前先引入的概念。给出一个二维坐标平面

  • 14
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值