64位 内存占用大 嵌入式_使用无损压缩减少NumPy的内存使用

本文探讨了在64位系统中,针对嵌入式设备内存限制,如何通过使用更小的数据类型和稀疏矩阵来减少NumPy数组的内存占用。介绍了如何选择适当的数据类型以减小内存需求,以及利用coordinate-style稀疏矩阵存储非零值来节省空间。此外,还讨论了在特定场景下,如使用scikit-image库时,数据类型转换可能导致的额外内存开销,并提出了无损压缩作为进一步优化内存的方法。
摘要由CSDN通过智能技术生成

9b2db2d9f172a005745d87f8be404872.png

在使用NumPy时,对于因数组过大而导致的内存问题,一个基本的减少内存占用的方法即压缩。通过改变数据的展示方式,通常在无需更改大量代码的情况下,即可达到减少内存占用的目的。

本文将介绍如下内容:

  1. 通过更小的数据类型(dtype)减少内存占用

  2. 稀疏矩阵

  3. 上述解决方案不适用的场景

使用更小的数据类型

在NumPy中创建数组时,会为其指定一个数据类型。此类型可能是uint8(无符号8位整数)或float64(64位浮点数)等等。

不同的数据类型所表示的数值范围有所不同:

  • 16位uint的范围是0-65535

  • 64位uint的范围是0-18446744073709551615

它们的内存使用程度也各不相同;64位整数需要的内存空间是16位整数的4倍。

这就给予我们减少内存占用的机会:如果数据是一个0~60k的整数,那么使用32位或64位的整数是没有意义的,可以使用16位整数进行内存空间优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值