信息技术之计算机组成教案,计算机组成原理教学大纲-信息技术学院.PDF

本课程为计算机科学与技术专业的核心基础课程,旨在使学生掌握计算机硬件各组成部件的原理及实现技术,建立计算机系统的整体概念。课程内容涵盖计算机系统概论、运算基础、存储系统等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机组成原理教学大纲-信息技术学院

《计算机组成原理》教学大纲

Computer Organization Principle

一、基本信息

课程代码:

课程学分:4

面向专业:本课程教学大纲适用于计算机科学与技术专业

课程性质:本系列课程是计算机科学与技术专业的一门重要专业基础课程,属于必修课程。在计算

机硬件系列课中起着承上启下的重要作用,是核心的一环。

开课院系:信息技术系

使用教材:计算机组成基础,孙德文编著,机械工业出版社,2009 年1 月 第1 版

辅助教材:计算机组成原理,蒋本珊,清华大学出版社,2007 年9 月

参考教材:计算机组成原理 白中英,科学出版社,2008 年 1 月 第4 版

计算机组成原理 唐朔飞,高等教育出版社,2009 年6 月

计算机组成原理应用教材,王万生,清华大学出版社,2006 年11 月

计算机组成原理,黄钦胜,电子工业出版社,2006 年7 月

先修课程:计算机导论、数字逻辑电路

并修课程:

后续课程:计算机接口技术、操作系统 、计算机体系结构、计算机网络 、嵌入式系统等

二、课程简介

《计算机组成原理》是计算机专业的一门核心专业基础课,在计算机专业各门课程中起着承上启

下的作用,并占有重要地位和作用。学习本课程旨在使学生掌握计算机硬件各组成部件的原理及实

现技术,建立计算机系统的整体概念和培养学生设计、开发计算机系统的能力。该课程为今后学习

计算机接口技术、计算机体系结构、计算机网络、计算机并行处理、计算机分布式处理技术等后续

专业课程课程打好基础。

《计算机组成原理》课程具有知识面广、内容多、难度大、更新快的特点。针对应用型本科生

的已有基础知识和学习能力,在教学中着重计算机的基本原理、基本知识点的讲授,通过课堂教学

和实践环节的训练,使学生掌握计算机各大部件的组成原理、逻辑实现、设计方法及其互连构成单

机系统的技术,以达到教学目标。

本课程以冯.诺依曼机基本结构为主线,介绍计算机的基本组成和内部工作机制,主要讲授计

算机系统概论、运算基础、数值的机器运算、存储系统和结构、指令系统、中央处理器、外围设备

和输入输出系统和总线等内容。

三、选课建议

本课程适用于信息技术系的计算机科学与技术专业的4 个专业方向。其先导课程《计算机导论》

和《数字逻辑电路》为本课程打下必要的基础。

四、课程基本要求

通过本课程学习达到的教学目标是,使学生了解:计算机系统的逻辑实现,包括硬件部件的结

构及如何连接这些组件使它们成为一个计算机系统,最终掌握冯.诺依曼计算机系统的基本工作原

1

理-存储程序控制思想。建立起计算机在CPU 级和硬件系统级的整机概念。

本课程是实践性很强的课程,采用配套的计算机组成原理实验装置(DVCC 实验机)开设相关

章节的实验课程和课程设计的环节,使学生掌握计算机组成原理的基本知识点内容,培养学生综合

运用所学计算机组成原理知识,分析和解决工程技术问题的能力。

五、课程内容

第一章 计算机系统概论 (3 学时)

本章主要内容:

① 计算机硬件的主要组成部分

② 计算机的软硬件概念

③ 主要的性能技术指标

④ 计算机系统的层次结构

⑤ 计算机的发展概况及应用领域

⑥ 常用的概念和名词术语

本章重点:计算机硬件的组成、计算机系统层次结构;冯.诺依曼机“存储程序”的基本思想。

第二章 运算基础 — 数值的机器级表示 (9 学时)

本章主要内容:

① 数制

② 机器数与真值

③ 定点表示法与浮点表示法

④ 字符与字符串的表示

⑤ 汉字编码

⑥ 校验码

本章重点:计算机中的常用数制及其之间的转换;带符号数的机器数的表示;机器数和真值之间的转换、

浮点数的一般格式、典型格式浮点数、数据校验码。

本章难点: 补码的概念及其表示;机器数和真值

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值