标题相似度算法_NLP:基于文本相似度的商品推荐

本课程通过讲解NLP的基础技术,如分词、词向量,结合电商标题相似度任务,展示如何运用NLP解决实际问题。内容涵盖AI发展、NLP介绍、中文分词、TF-IDF、余弦相似度和Word2Vec等,旨在帮助学员掌握NLP核心技术。
摘要由CSDN通过智能技术生成

bbfe1a9b61067734aefd10e926fdbea2.png

1fcc7d25fc575daa2c2cd747e008d6b2.png

课程简介:

自然语言处理是人工智能皇冠上的“明珠”,他是让机器模仿人类,理解人类的关键。目前这项技术,已经应用在机器翻译、语音助手、自动问答、知识图谱、中文处理等多个领域。

本门课程讲解了NLP技术中基础的分词、词向量等技术,而这些知识也是所有NLP项目中的核心关键技术。我们以一个完整的电商标题相似度任务为例,带你体验如何使用NLP技术完成实际的工程项目,快速掌握NLP的核心技术。

讲师介绍

祖鑫奇

某上市公司一线算法工程师3年NLP开发经验具备电商导购机器人、文本处理、复杂NLP模型设计和调优经验

课程目录:

AI发展历程与现状

NLP简述与任务介绍

中文分词

anaconda与jupyter使用简介

Python实现中文分词

文本特征表示

Python实现tf-idf

余弦相似度

基于tf-idf的文本相似度匹配

用Python直接实现tf-idf文本相似度计算

word2vec原理与实现

基于word2vec的文本相似度匹配

NLP最新技术简述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值