基于语义相似度的商品搜索推荐实践
一、背景
搜索是一个发现用户主动兴趣的场景,query是用户兴趣的浓缩表达,用户输入的query可认为是一种ugc,在电商类产品中,普遍存在ugc推荐场景,因而query的推荐也扮演着不可小觑的角色,在产品中,我们在搜索栏为用户推荐Query。在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下A句子和B句子的语义相似度等等。
二、推荐目标
全局目标是提升商品CTR和用户体验,分解为:
- 推荐与商品相关的query
- 增强曝光query集合的多样性,提升用户体验
- 提升CTR,同时提升跳转到搜索页,在搜索结果页的内容点击率
三、推荐架构
本文主要介绍【实时算法层】

三、实时算法层介绍
1. Query分词
使用HanLP开源分词框架,同时例行化添加新词到词库。一方面可通过用户输入的 Query词补充词库,另一方面可通过用户点击的商品与用户输入的Query分词进行向量相似度计算,从而可筛选出Query分词的同义词。
2. 意图识别
意图识别,即将输入de Query词识别为指定的大、中、小类,意图识别本身也是一个分类问题,其实方法和分类模型的方法大同小异。
常用的方法有:
- 基于词典模板的规则分类
- 基于过往日志匹配(适用于搜索引擎)
- 基于分类模型进行意图识别

本文介绍了电商商品搜索推荐中如何利用语义相似度提升CTR和用户体验。通过Query分词、意图识别、粗排、精排和重排等步骤,结合FastText、ElasticSearch和DSSM等技术,实现高效且精准的推荐。后续优化涉及用户反馈数据的运用和线上效果提升的关键因素分析。
最低0.47元/天 解锁文章
1763

被折叠的 条评论
为什么被折叠?



