基于语义相似度的商品搜索推荐实践

本文介绍了电商商品搜索推荐中如何利用语义相似度提升CTR和用户体验。通过Query分词、意图识别、粗排、精排和重排等步骤,结合FastText、ElasticSearch和DSSM等技术,实现高效且精准的推荐。后续优化涉及用户反馈数据的运用和线上效果提升的关键因素分析。
摘要由CSDN通过智能技术生成

一、背景

搜索是一个发现用户主动兴趣的场景,query是用户兴趣的浓缩表达,用户输入的query可认为是一种ugc,在电商类产品中,普遍存在ugc推荐场景,因而query的推荐也扮演着不可小觑的角色,在产品中,我们在搜索栏为用户推荐Query。在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下A句子和B句子的语义相似度等等。

二、推荐目标

全局目标是提升商品CTR和用户体验,分解为:

  • 推荐与商品相关的query
  • 增强曝光query集合的多样性,提升用户体验
  • 提升CTR,同时提升跳转到搜索页,在搜索结果页的内容点击率

三、推荐架构

本文主要介绍【实时算法层】
商品推荐简单架构

三、实时算法层介绍

1. Query分词

使用HanLP开源分词框架,同时例行化添加新词到词库。一方面可通过用户输入的 Query词补充词库,另一方面可通过用户点击的商品与用户输入的Query分词进行向量相似度计算,从而可筛选出Query分词的同义词。

2. 意图识别

意图识别,即将输入de Query词识别为指定的大、中、小类ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值