波菲那契数列公式_裴波那契数列

斐波那契数列

的发明者,是意大利数学家列昂纳多

·

斐波那契(

Leonardo Fibonacci

,生于

公元

1170

年,卒于

1240

年,籍贯大概是比萨)

。他被人称作

比萨的列昂纳多

1202

年,他

撰写了

《珠算原理》

(Liber Abaci)

一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,

列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、

希腊、西

西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:

1

1

2

3

5

8

13

21

……

这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:

(1/

5)*{[(1+

5)/2]^n - [(1-

5)/2]^n}

(又叫

比内公式

,是用无理数表示有理数的一个范例。

)

有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

【奇妙的属性】

随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值

0.6180339887

……

从第二项开始,每个奇数项的平方都比前后两项之积多

1

,每个偶数项的平方都比前后

两项之积少

1

(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,

比如第五项的平方比前后两项之积多

1

,第四项的平方比前后两项之积少

1

)

如果你看到有这样一个题目:

某人把一个

8*8

的方格切成四块,

拼成一个

5*13

的长方形,

故作惊讶地问你:为什么

64

65

?其实就是利用了斐波那契数列的这个性质:

5

8

13

是数列中相邻的三项,事实上前后两块的面积确实差

1

,只不过后面那个图中有一条细长的

狭缝,一般人不容易注意到。

斐波那契数列的第

n

项同时也代表了集合

{1,2,...,n}

中所有不包含相邻正整数的子集个

数。

斐波那契数列(

f(n)

f(0)=0

f(1)=1

f(2)=1

f(3)=2

……

)的其他性质:

1.f(0)+f(1)+f(2)+

+f(n)=f(n+2)-1

2.f(1)+f(3)+f(5)+

+f(2n-1)=f(2n)-1

3.f(0)+f(2)+f(4)+

+f(2n)=f(2n+1)-1

4.[f(0)]^2+[f(1)]^2+

+[f(n)]^2=f(n)

·

f(n+1)

5.f(0)-f(1)+f(2)-

+(-1)^n

·

f(n)=(-1)^n

·

[f(n+1)-f(n)]+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值