“
斐波那契数列
”
的发明者,是意大利数学家列昂纳多
·
斐波那契(
Leonardo Fibonacci
,生于
公元
1170
年,卒于
1240
年,籍贯大概是比萨)
。他被人称作
“
比萨的列昂纳多
”
。
1202
年,他
撰写了
《珠算原理》
(Liber Abaci)
一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,
列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、
希腊、西
西里和普罗旺斯研究数学。
斐波那契数列指的是这样一个数列:
1
、
1
、
2
、
3
、
5
、
8
、
13
、
21
、
……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:
(1/
√
5)*{[(1+
√
5)/2]^n - [(1-
√
5)/2]^n}
(又叫
“
比内公式
”
,是用无理数表示有理数的一个范例。
)
有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
【奇妙的属性】
随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值
0.6180339887
……
从第二项开始,每个奇数项的平方都比前后两项之积多
1
,每个偶数项的平方都比前后
两项之积少
1
。
(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,
比如第五项的平方比前后两项之积多
1
,第四项的平方比前后两项之积少
1
)
如果你看到有这样一个题目:
某人把一个
8*8
的方格切成四块,
拼成一个
5*13
的长方形,
故作惊讶地问你:为什么
64
=
65
?其实就是利用了斐波那契数列的这个性质:
5
、
8
、
13
正
是数列中相邻的三项,事实上前后两块的面积确实差
1
,只不过后面那个图中有一条细长的
狭缝,一般人不容易注意到。
斐波那契数列的第
n
项同时也代表了集合
{1,2,...,n}
中所有不包含相邻正整数的子集个
数。
斐波那契数列(
f(n)
,
f(0)=0
,
f(1)=1
,
f(2)=1
,
f(3)=2
……
)的其他性质:
1.f(0)+f(1)+f(2)+
…
+f(n)=f(n+2)-1
2.f(1)+f(3)+f(5)+
…
+f(2n-1)=f(2n)-1
3.f(0)+f(2)+f(4)+
…
+f(2n)=f(2n+1)-1
4.[f(0)]^2+[f(1)]^2+
…
+[f(n)]^2=f(n)
·
f(n+1)
5.f(0)-f(1)+f(2)-
…
+(-1)^n
·
f(n)=(-1)^n
·
[f(n+1)-f(n)]+1