一、读取一张图片,修改颜色通道后输出
可以得到图像的:行数,列数,通道数的矩阵,对矩阵进行操作可改变图像像素
代码如下:
# numpy数组操作
def access_pixles(image):
print(image.shape)
height = image.shape[0] # 图片垂直尺寸
width = image.shape[1] # 图片水平尺寸
channel = image.shape[2] # 图片通道数
print("width: %s, height: %s, channel: %s" % (width, height, channel))
for row in range(height): # 三重循环对每个像素点进行修改
for col in range(width):
for c in range(channel):
pv = image[row, col, c]
image[row, col, c] = 255 - pv # 进行反向修改
cv.imshow("newImage", image)
src = cv.imread("./static/image/thumbnail.jpg")
cv.imshow("oldImage", src)
t1 = cv.getTickCount()
access_pixles(src)
t2 = cv.getTickCount()
time = (t2 - t1)*1000/cv.getTickFrequency()
print("time: %s" % time)
cv.waitKey(0)
cv.destroyAllWindows()
代码解释:
getTickCount():用于返回从操作系统启动到当前所经的计时周期数,看名字也很好理解,get Tick Count(s)。
getTickFrequency():用于返回CPU的频率。get Tick Frequency。这里的单位是秒,也就是一秒内重复的次数。
总次数/一秒内重复的次数 = 时间(s)
1000 *总次数/一秒内重复的次数= 时间(ms)
运行效果:
——————————————————————————————————————————————————————————
二、自定义一张多通道的图片。用到的函数zeros和ones
代码如下:
# 引入包
import cv2 as cv
import numpy as np
def create_image():
img = np.zeros([400, 600, 3], np.uint8)
img[:, :, 0] = np.ones([400, 600])*255 # 改变第一个channel的值,255为白色
img[:, :, 1] = np.ones([400, 600])*255 # 改变第二个channel的值
img[:, :, 2] = np.ones([400, 600])*255 # 改变第三个channel的值
cv.imshow("ownImage", img)
create_image()
cv.waitKey(0)
cv.destroyAllWindows()
代码解释:
1、numpy.zeros
返回特定大小,以0填充的新数组。默认类型为 float;
uint8: 无符号整数(0到255)
如:
x = np.zeros([2,2], dtype = int)
#运行结果:
[[0 0]
[0 0]]
2、numpy.ones
返回特定大小,以1填充的新数组。默认类型为 float
如:
x = np.ones([2,2], dtype = int)
#运行结果:
[[1 1]
[1 1]]
3、矩阵
对于X[:,:,0],是取三维矩阵中第一维的所有数据
对于X[:,:,1],是取三维矩阵中第二维的所有数据
对于X[:,:,m:n],是取三维矩阵中第m维到第n-1维的所有数据
运行结果:
——————————————————————————————————————————————————————————
三、调用库函数来实现像素取反
像素取反 调用bitwise_not函数运行时间非常快
代码如下:
# 引入包
import cv2 as cv
def inverse(image):
dst = cv.bitwise_not(image)
cv.imshow("inverse", dst)
src = cv.imread("./static/image/blur.jpg")
cv.namedWindow("oldImage", cv.WINDOW_NORMAL)
cv.imshow("oldImage", src)
t1 = cv.getTickCount()
inverse(src)
t2 = cv.getTickCount()
time = (t2 - t1)*1000/cv.getTickFrequency()
print("time: %s" % time)
cv.waitKey(0)
cv.destroyAllWindows()