PromptCBLUE_:中文医学领域多任务少镜头学习大规模指令调优数据集

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:该数据集专为中文医学领域设计,采用少镜头学习技术,允许模型在样本量有限的情况下学习新任务和识别医学概念。包含大规模指令调优数据,旨在提升AI在医学文本理解和应用上的性能。数据集可能与Python语言和类似ChatGPT的NLP模型相关,用于训练能理解和回应医学专业问题的聊天机器人。解压后包含“说明.txt”和“PromptCBLUE_main.zip”,分别提供数据集使用说明和实际数据内容,如预处理文本、标签和指令示例。研究者可使用Python深度学习库构建多任务学习模型,利用元学习或迁移学习策略进行微调,并通过多种评价指标评估模型性能,以提升AI在医疗领域的应用效率和质量。

1. 中文医学领域机器学习概述

1.1 机器学习在医学领域的应用现状

随着人工智能技术的快速发展,机器学习已经成为医学领域中不可或缺的一部分。在疾病的诊断、医疗影像的解读、个性化治疗方案的制定以及医疗数据的管理等方面,机器学习展现出了强大的应用潜力和价值。机器学习算法能够处理大量的医疗数据,并从中发现潜在的模式和规律,辅助医生作出更为准确的决策。

1.2 中文医学信息处理的挑战与机遇

中文医学信息处理面临的挑战主要包括自然语言处理技术在专业领域的应用限制、医疗数据的隐私保护和数据共享问题、以及中文语境下的多义性和复杂性处理等。机遇方面,随着医疗行业数字化转型的推进,大量中文医疗数据的积累和共享机制的逐步完善,为机器学习模型的训练和应用提供了丰富的素材。

1.3 本章小结

在本章中,我们概述了机器学习在中文医学领域的应用现状和面临的挑战,同时指出了未来的发展机遇。随着更多先进机器学习技术的涌现和医疗数据的不断增长,未来在医学领域的机器学习应用将更加广泛和深入。在接下来的章节中,我们将深入探讨少镜头学习技术、大规模指令调优策略等前沿技术,以及它们在医学领域的具体应用。

2. 少镜头学习技术详解

少镜头学习(Few-shot Learning)是机器学习领域的一个前沿课题,其目标是使计算机能够从非常有限的数据中学习到新任务的泛化能力。本章节将详细介绍少镜头学习技术的概念、理论基础以及在实际中的应用。

2.1 少镜头学习技术的概念和发展

2.1.1 少镜头学习技术的定义

少镜头学习技术是指在只有极少数样本(通常只有1到5个样本)的情况下训练模型进行分类、回归或其他预测任务的机器学习方法。该技术源于人类的快速学习能力,即人类能够在看过很少的例子后就能识别新对象。在传统的机器学习方法中,通常需要大量的标注数据来训练模型,才能得到一个泛化性能良好的模型。然而,在许多实际应用中,获取大量标注数据是昂贵和不切实际的,特别是在医学领域,其中数据标注往往需要专业知识和大量时间。

少镜头学习在解决数据稀疏问题方面显示出了巨大的潜力,使得机器学习模型能够在有限的数据条件下快速适应新任务或新类别。这为那些数据获取困难的应用领域带来了新的可能性,比如医学领域中的罕见病识别、个性化医疗等。

2.1.2 少镜头学习技术的发展历程

少镜头学习的发展与深度学习的突破紧密相关。最早的尝试可以追溯到20世纪90年代,但直到最近几年,随着深度学习方法的兴起和计算能力的显著提高,少镜头学习技术才得到了快速发展。

在早期,研究者们主要依靠传统的机器学习方法,如支持向量机(SVM),在小样本数据集上进行学习。这些方法往往需要复杂的特征工程来提高模型的泛化能力。

随着深度学习方法的发展,研究者开始尝试将深度神经网络应用于少镜头学习。2017年,Meta-Learning for Few-Shot Learning(MAML)模型的提出为少镜头学习领域带来了重大突破,该方法能够通过在多个任务上进行预训练,使模型快速适应新任务。随后,基于度量学习和生成模型的少镜头学习方法相继被提出,不断推动着这一领域的发展。

2.2 少镜头学习技术的理论基础

2.2.1 基于迁移学习的少镜头学习

迁移学习是少镜头学习领域的一种重要技术,它通过将在一个或多个源任务上学到的知识迁移到新的目标任务上,从而降低目标任务所需的标注样本数量。

在少镜头学习中,迁移学习通常涉及两个阶段:预训练阶段和微调阶段。预训练阶段的目的是在大规模数据集上学习通用的特征表示,这些特征应当尽可能地对新任务有所帮助。在微调阶段,网络通常在目标任务的少量样本上进行调整,以适应新任务的特定特征。

2.2.2 基于度量学习的少镜头学习

度量学习关注于学习一个距离函数,使得相同类别的样本之间的距离更小,不同类别的样本之间的距离更大。在少镜头学习的背景下,度量学习方法如孪生网络(Siamese Networks)和匹配网络(Matching Networks)被广泛采用。

孪生网络通过两个相同的子网络,输入对的样本,学习一个度量函数来判别样本是否属于同一个类别。匹配网络则通过学习一个可以对查询样本进行分类的端到端网络,在支持集的基础上进行分类。

2.2.3 基于模型泛化的少镜头学习

模型泛化能力是少镜头学习中的另一个关键问题。在只有极少数样本的情况下,模型往往容易过拟合,即模型在训练集上的表现很好,但在未见过的数据上表现不佳。

为了提高模型泛化能力,研究者们提出了如原型网络(Prototypical Networks)和关系网络(Relation Networks)等方法。这些方法通过学习样本表示空间中的原型(典型样本),或者学习样本之间的关系来增强模型的泛化能力。

2.3 少镜头学习技术的实践应用

2.3.1 实例分析:少镜头学习在医学图像分类中的应用

在医学图像分类中,少镜头学习技术可以大大减少标注需求。例如,应用于皮肤癌的自动诊断系统中,由于皮肤癌的种类繁多,且每种类型的病例样本相对较少,传统的深度学习方法难以有效训练模型。通过少镜头学习技术,模型能够在仅有少数标记样本的情况下,快速学习到对皮肤癌进行分类的能力。

2.3.2 实例分析:少镜头学习在医学文本分析中的应用

医学文本分析中的任务,如罕见病的临床报告分类,同样面临着样本数量不足的问题。少镜头学习技术通过学习少量样本的语义信息和上下文关系,可实现对罕见病临床报告的高效分类。

在实际应用中,少镜头学习模型通常结合医学知识图谱,以便更好地理解医学术语和概念,进一步提升分类的准确率和可靠性。通过精心设计的少镜头学习模型,医学研究者能够对医学文本数据进行更加深入的分析和挖掘。

3. 大规模指令调优策略

3.1 大规模指令调优的基本理论

3.1.1 指令调优的定义和重要性

指令调优(Prompt Tuning)是一种在预训练语言模型中通过微调模型的输入指令来实现特定任务的方法。不同于传统的模型微调方法,指令调优只关注于改变模型的输入部分,而非模型的所有参数。这种方法在维持模型预训练获得的广泛知识的同时,让模型适应新的特定任务。

指令调优的重要性在于其灵活性和计算成本的降低。因为模型的大部分参数被保持固定,指令调优可以更快地适应新任务,且不需要大量的计算资源。在实际应用中,这使得指令调优成为一种高效且实用的模型微调策略。

例如,对于一个在医学文本处理任务中已经预训练好的模型,通过改变输入提示(prompt)的方式,指令调优可以让模型快速适应新的特定任务,如疾病诊断或医学问答系统,而无需对整个模型进行大规模的微调。
3.1.2 大规模指令调优的特点和挑战

大规模指令调优的关键特点包括:

  • 参数效率 :相比于模型微调,指令调优仅需更新少量的参数,实现了参数上的高效率。
  • 任务适应性 :指令调优提供了快速调整模型以适应新任务的能力,这在多任务学习中尤其有优势。
  • 维持通用性 :在指令调优中,模型的大部分权重保持不变,使得模型仍能维持其在广泛任务上的通用能力。

挑战方面:

  • 指令设计的复杂性 :指令调优依赖于设计有效的输入提示,这对于不同任务来说是一个挑战。
  • 泛化能力的限制 :尽管模型保留了广泛的知识,但固定的参数可能在某些特定任务上限制了模型的性能。
  • 微调资源的需求 :尽管指令调优在参数数量上有所减少,但仍然需要一定的计算资源进行微调。

3.2 大规模指令调优的技术方法

3.2.1 数据集增强技术

数据集增强技术是提高模型泛化能力的有效手段。在指令调优中,数据集增强可以通过变换输入指令或生成与原始数据类似的样本,来扩展训练集,使得模型在面对变化或未见过的数据时仍能保持性能。

常见的数据集增强方法包括:

- **回译(Back-translation)**:将文本翻译成另一种语言,再翻译回原语言,从而生成新的训练样本。
- **同义词替换**:用文本中的同义词替换原词,以增加数据多样性。
- **语法变形**:通过改变句子的语法结构,生成不同的但含义相近的句子。
3.2.2 模型微调技术

模型微调技术是传统上在深度学习中用于改善模型性能的方法。在大规模指令调优中,微调主要集中在模型的顶层,即那些用于生成最终预测结果的参数层。微调可以通过引入少量的新数据或使用特定任务的数据集来完成。

在进行模型微调时,需要注意:

- **过拟合的风险**:数据量不足时,模型可能会对训练数据过拟合。
- **微调的深度**:有时微调的深度比预期的要浅,以减少对预训练模型的破坏。
- **微调的范围**:通常会选择部分层进行微调,而非整个模型。
3.2.3 知识蒸馏技术

知识蒸馏(Knowledge Distillation)是通过将大型模型的知识转移到小型模型中来减少模型复杂性的技术。在指令调优中,知识蒸馏可以用来增强模型在特定任务上的性能,同时维持模型的小型化。

知识蒸馏的关键步骤包括:

- **软标签生成**:使用大型预训练模型生成训练数据的“软”输出(即概率分布),而非简单的硬标签。
- **小模型训练**:训练一个新的小型模型,使其在软标签上表现良好。
- **蒸馏效果评估**:评估小模型在特定任务上的性能,确保知识转移成功。

3.3 大规模指令调优的实践案例

3.3.1 实例分析:医学图像处理中的大规模指令调优

在医学图像处理任务中,可以使用大规模指令调优来提高模型对特定类型疾病识别的准确度。例如,一个预训练的卷积神经网络(CNN)可以通过改变输入指令的方式被调优来识别乳腺癌。

具体步骤包括:

- **预训练模型选择**:选择一个广泛用于医学图像分析的预训练模型,如VGG或ResNet。
- **指令定义**:设计特定于乳腺癌识别的输入指令,例如图像的上下文描述。
- **微调与评估**:在乳腺癌图像数据集上微调模型,并使用精确度、召回率等指标评估模型性能。
3.3.2 实例分析:医学自然语言处理中的大规模指令调优

在医学自然语言处理(NLP)任务中,指令调优可以用于提高医学文本分类或关系抽取等任务的准确性。通过精心设计的指令,模型能够更好地理解医学领域的语境和术语。

以下是医学NLP任务中的实践步骤:

- **任务定义**:明确任务目标,如医学实体识别或医学问答。
- **指令设计**:根据任务需求,设计用于特定任务的输入指令。
- **调优与测试**:在特定的医学NLP数据集上执行指令调优,并进行严格的测试来保证模型泛化能力。
graph LR
A[开始] --> B[选择预训练模型]
B --> C[设计输入指令]
C --> D[微调模型参数]
D --> E[测试模型性能]
E --> F[评估任务结果]
F --> G[结束]

以上是第三章的详尽内容,它从基本理论出发,深入探讨了大规模指令调优的技术方法,并提供了实践案例。通过结合具体的代码和实践,章节内容旨在为读者提供一个全面且深入的理解。

4. PromptCBLUE_.zip数据集剖析

4.1 数据集结构和使用说明

4.1.1 数据集的结构和组成

PromptCBLUE_.zip数据集是一个专门为医疗领域设计的大型多任务学习数据集,它包括了文本、图像、语音等多个模态的数据,以及它们对应的标注信息。数据集的结构旨在提供足够的多样性和复杂性,以支持在不同医疗任务中训练、测试和评估机器学习模型。数据集的组成大致可以分为以下几个部分:

  1. 医学图像数据 :包含了各类医学成像结果,如X光片、MRI扫描、CT扫描等,它们都经过了专家的精细标注。
  2. 医学文本数据 :包括医生的诊断记录、病历报告、临床研究文献等,这些文本数据被预处理并标注,适用于自然语言处理任务。
  3. 语音数据 :患者的语音记录,可用于语音识别任务,如分析患者的语音特征以及语音中隐含的疾病信息。
  4. 元数据和标注信息 :提供了数据集每个实例的详细背景信息,包括数据来源、患者信息、疾病诊断等。

每个模态的数据都经过了严格的隐私保护处理,确保在公开使用时,不会泄露任何敏感信息。

4.1.2 数据集的下载和安装指南

数据集可以通过以下步骤在官方提供的数据平台上进行下载和安装:

  1. 访问[官方网站](***。
  2. 注册并登录账号。
  3. 在数据集页面选择“PromptCBLUE_.zip”进行下载。
  4. 下载完成后,解压zip文件。
  5. 根据提供的数据集使用说明,配置环境变量和相关参数。

确保使用前,已经安装了所有必要的库和依赖项,如Python环境、TensorFlow或PyTorch等深度学习框架。

# 下载和解压数据集的示例代码
wget ***

解压后,按照readme文件中的说明配置好环境,就可以开始使用这个数据集了。

4.2 数据集在医学领域的应用价值

4.2.1 促进医学领域的多任务学习

PromptCBLUE_.zip数据集的多元数据模态为多任务学习提供了充分的条件。多任务学习是指同时学习多个相关任务,利用它们之间的共享表示来提升各个任务的学习效果。在医学领域,可以通过以下方式应用多任务学习:

  1. 联合图像和文本分析 :将图像识别与自然语言处理结合,如在诊断分析中,同时利用图像数据和病理报告中的文本数据来提高诊断的准确性。
  2. 跨模态知识迁移 :学习图像数据的特征,然后应用到文本数据的分析任务中,反之亦然。

4.2.2 提升医学领域的模型泛化能力

使用PromptCBLUE_.zip数据集可以帮助开发出具有更好泛化能力的模型,这是因为多模态的数据组合能够为模型提供更全面的训练环境。泛化能力强的模型在面对新的、未见过的医疗数据时,能够更好地进行泛化和适应。

此外,数据集的规模和多样性可以模拟现实世界医疗环境中的各种情况,增强模型的鲁棒性。

4.3 数据集的高级应用技巧

4.3.1 数据增强和预处理方法

数据增强和预处理是提高模型性能的重要步骤,尤其对于医学数据来说,数据质量直接影响到最终模型的效果。以下是一些高级的数据增强和预处理技巧:

  1. 图像数据 :采用旋转、缩放、剪切等技术进行数据增强,以增加图像数据的多样性,减少过拟合的风险。
  2. 文本数据 :采用词干提取、词形还原等自然语言处理技术进行文本清洗和标准化。
  3. 语音数据 :对语音信号进行噪声去除、回声消除等预处理步骤,以提高语音识别的准确率。
# Python代码示例:使用OpenCV对医学图像进行旋转操作
import cv2

# 加载图像
image = cv2.imread('medical_image.png')

# 旋转角度和中心点
angle = 45
center = (image.shape[1]//2, image.shape[0]//2)

# 旋转图像
rotated_image = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated_image = cv2.warpAffine(image, rotated_image, (image.shape[1], image.shape[0]))

# 保存旋转后的图像
cv2.imwrite('rotated_medical_image.png', rotated_image)

4.3.2 结合PromptCBLUE_.zip的创新性研究思路

PromptCBLUE_.zip数据集的发布为医疗领域的研究者提供了丰富的数据资源,结合这个数据集,可以开展以下创新性研究:

  1. 跨模态学习 :探索图像和文本之间的关联,实现图像描述生成、图像检索等任务。
  2. 知识融合 :将不同模态的特征进行融合,尝试构建综合性的医疗诊断模型。
  3. 弱监督和无监督学习 :利用大量未标注的数据,研究新的学习范式,减少对大规模标注数据的依赖。

研究者需要充分利用数据集提供的丰富信息,并结合最新的机器学习技术,挖掘数据背后的潜在知识,推动医学领域的发展。

5. 深度学习在医学领域的综合应用

随着人工智能的快速发展,深度学习已经在医学领域展示了巨大的潜力,从医学图像的自动诊断到疾病预测的模式识别,深度学习正在逐步改变医疗行业的面貌。本章将探讨深度学习在医学领域的应用,包括常用深度学习库的介绍、多任务学习模型的构建、迁移学习方法的实践以及模型性能评估的标准和方法。

5.1 Python深度学习库的介绍和应用

5.1.1 常用的深度学习库和框架

在深度学习的应用中,Python凭借其简洁易读的语法和丰富的数据科学库成为了首选语言。常用的深度学习库包括TensorFlow、Keras、PyTorch等。TensorFlow是谷歌开发的开源框架,适用于从研究到生产的所有环境。Keras则以其简洁的API和模块化设计而受到初学者的欢迎。PyTorch由Facebook推出,特别受研究社区青睐,因其动态计算图的特性而易于调试和开发。

5.1.2 如何在医学数据处理中使用深度学习库

在医学领域,深度学习库的应用通常包括数据的预处理、模型的构建与训练、结果的分析和验证。以下是一个简单的例子,演示如何使用PyTorch来构建一个简单的图像分类模型:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 数据预处理
transform = ***pose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),          # 转换为Tensor
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 归一化
])

# 加载数据集
train_dataset = datasets.ImageFolder(root='path_to_train_data', transform=transform)
test_dataset = datasets.ImageFolder(root='path_to_test_data', transform=transform)

# 构建模型
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.fc1 = nn.Linear(64 * 56 * 56, 1024)
        self.fc2 = nn.Linear(1024, 10)  # 假设有10个类别

    def forward(self, x):
        x = torch.relu(self.conv1(x))
        x = torch.relu(self.conv2(x))
        x = torch.flatten(x, 1)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = SimpleCNN()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    for inputs, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/len(train_loader)}')

# 测试模型
model.eval()
correct = 0
total = 0
with torch.no_grad():
    for inputs, labels in test_loader:
        outputs = model(inputs)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy on the test set: {100 * correct / total}%')

这段代码首先对医学图像数据进行了预处理,接着构建了一个简单的卷积神经网络模型,然后在训练数据集上训练模型,并最终在测试数据集上评估模型的性能。

5.2 多任务学习模型的构建和优化

5.2.1 多任务学习的概念和框架

多任务学习(Multi-Task Learning, MTL)是一种学习范式,它通过同时训练一个模型来解决多个相关任务,以此提高模型在各个任务上的性能。MTL能够使模型更好地泛化,并在资源受限的情况下实现任务间的知识共享。

5.2.2 多任务学习模型在医学领域的构建实例

在医学领域,例如,可以构建一个模型同时进行疾病分类和特征预测。下面是一个构建多任务学习模型的简单实例:

class MultiTaskModel(nn.Module):
    def __init__(self):
        super(MultiTaskModel, self).__init__()
        self.shared_layer = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2)
        )
        self.classifier = nn.Linear(64 * 112 * 112, 10)  # 分类器
        self.regressor = nn.Linear(64 * 112 * 112, 5)   # 回归器

    def forward(self, x):
        shared = self.shared_layer(x)
        shared = shared.view(shared.size(0), -1)  # Flatten
        class_output = self.classifier(shared)
        regress_output = self.regressor(shared)
        return class_output, regress_output

# 模型实例化、损失函数和优化器设置等步骤与之前的简单模型类似。

在这个例子中,共享层对输入的医学图像进行特征提取,并将提取的特征输入到分类器和回归器,分别用于分类和回归任务。

5.3 元学习或迁移学习方法的实践

5.3.1 元学习和迁移学习的医学应用场景

元学习(Meta-Learning)或迁移学习(Transfer Learning)在医学领域特别有用,因为医疗数据往往是稀缺的。元学习通过学习一系列的任务来获取快速适应新任务的能力,而迁移学习则是利用一个任务上学到的知识来解决另一个相关任务。

5.3.2 元学习和迁移学习模型在医学领域的优化策略

在实践中,可以采用预训练模型作为起点,在医学领域特定的小数据集上进行微调。例如,使用在ImageNet上预训练的模型来处理医学图像数据:

# 假设已经有一个预训练模型pretrained_model和医学图像数据集med_data

# 冻结预训练模型的参数
for param in pretrained_model.parameters():
    param.requires_grad = False

# 替换预训练模型最后的分类器以适应医学图像的分类
pretrained_model.classifier = nn.Linear(pretrained_model.classifier.in_features, num_classes医学数据集)

# 微调模型
optimizer = optim.Adam(pretrained_model.parameters(), lr=1e-5)
loss_function = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
    for images, labels in med_data:
        optimizer.zero_grad()
        outputs = pretrained_model(images)
        loss = loss_function(outputs, labels)
        loss.backward()
        optimizer.step()

5.4 模型性能评估的标准和方法

5.4.1 模型性能评估的重要性

在医学领域,模型的性能评估尤为重要,因为它直接关系到临床决策的准确性和患者的健康。常见的评估指标包括准确率、召回率、精确率、F1分数等。

5.4.2 评估模型在医学领域应用性能的标准和工具

评估深度学习模型性能的工具有很多,例如scikit-learn、scikit-learn-contrib、Pandas等。在医学图像处理中,还可以使用专门的工具如ITK-SNAP、3D Slicer等。以下是如何使用scikit-learn进行模型性能评估的一个示例:

from sklearn.metrics import classification_report, confusion_matrix

# 假设 pred 是模型预测的类别,true 是实际的类别标签
print(confusion_matrix(true, pred))
print(classification_report(true, pred))

这段代码首先打印了模型的混淆矩阵和分类报告,其中包含了准确率、召回率、精确率和F1分数等指标。

通过上述章节的介绍,我们可以看到深度学习在医学领域的应用是多方面的,并且随着技术的进步和医疗数据的累积,其潜力还远未被完全发掘。随着未来更多研究的开展和算法的优化,深度学习将会在医学领域扮演更加重要的角色。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:该数据集专为中文医学领域设计,采用少镜头学习技术,允许模型在样本量有限的情况下学习新任务和识别医学概念。包含大规模指令调优数据,旨在提升AI在医学文本理解和应用上的性能。数据集可能与Python语言和类似ChatGPT的NLP模型相关,用于训练能理解和回应医学专业问题的聊天机器人。解压后包含“说明.txt”和“PromptCBLUE_main.zip”,分别提供数据集使用说明和实际数据内容,如预处理文本、标签和指令示例。研究者可使用Python深度学习库构建多任务学习模型,利用元学习或迁移学习策略进行微调,并通过多种评价指标评估模型性能,以提升AI在医疗领域的应用效率和质量。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值