参差分析图(线性回归、二次回归)
残差分析(residual analysis)回归方程拟合的数值和实际数值的差值就是残差;残差分析是通过残差所提供的信息,分析出数据的可靠性、周期性或其他干扰;用于分析模型的假定正确与否的方法;残差:指观测值与预测值(拟合值)之间的差,即实际观测值与回归估算值的差;
绘制残差图
通常使用颜色渐变及气泡面积大小,通过视觉暗示对应残差的绝对值大小,用于实际数据点的表示;
拟合数据点则用小空心圆圈表示,并放置在灰色的拟合曲线上;
用直线连接实际数据点和拟合数据点;
残差的绝对值越大,颜色越红、气泡也越大,连接直线越长,可以很清晰地观察数据的拟合效果;
残差分析图绘制方法
先根据拟合曲线计算预测值和残差;
再使用实际值与预测值绘制散点图;
最后使用残差作为实际值的误差线长度,添加误差线;
实现实际值与预测值的连接;
将实际值的气泡面积大小与颜色映射到对应点的残差数值;
Statsmodels包的sm.OLS()函数可以实现线性或多项式回归拟合方程的求解,依据方程,可以求取预测值;
绘制线性回归
import pandas as pd
import numpy as np
from plotnine import *
import statsmodels.api as sm
df=pd.