ols残差_python数据关系型图表散点图系列残差分析图

本文介绍了如何使用Python进行线性回归和二次回归的残差分析图绘制。残差分析通过比较观测值与预测值的差值(残差),评估模型的拟合优度。通过颜色和气泡大小,可以直观展示数据的拟合效果, Statsmodels库的sm.OLS()函数用于求解回归方程并计算残差。
摘要由CSDN通过智能技术生成

b9c61a0daebf3cc459e387ad09ec7910.png

参差分析图(线性回归、二次回归)

残差分析(residual analysis)回归方程拟合的数值和实际数值的差值就是残差;残差分析是通过残差所提供的信息,分析出数据的可靠性、周期性或其他干扰;用于分析模型的假定正确与否的方法;残差:指观测值与预测值(拟合值)之间的差,即实际观测值与回归估算值的差;

绘制残差图

  • 通常使用颜色渐变及气泡面积大小,通过视觉暗示对应残差的绝对值大小,用于实际数据点的表示;

  • 拟合数据点则用小空心圆圈表示,并放置在灰色的拟合曲线上;

  • 用直线连接实际数据点和拟合数据点;

  • 残差的绝对值越大,颜色越红、气泡也越大,连接直线越长,可以很清晰地观察数据的拟合效果;

残差分析图绘制方法

  • 先根据拟合曲线计算预测值和残差;

  • 再使用实际值与预测值绘制散点图;

  • 最后使用残差作为实际值的误差线长度,添加误差线;

  • 实现实际值与预测值的连接;

  • 将实际值的气泡面积大小与颜色映射到对应点的残差数值;

  • Statsmodels包的sm.OLS()函数可以实现线性或多项式回归拟合方程的求解,依据方程,可以求取预测值;

绘制线性回归

import pandas as pd

import numpy as np

from plotnine import *

import statsmodels.api as sm

df=pd.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值