实分析royden第四版答案_分析和代数学原理(9)

8a593240052ae622ded1e83394eaa6b8.png

赋范线性空间

我们已经用矩阵研究了有限维的线性空间,并得到了一系列的深刻结论,例如PID上模的结构定理。暂时我们还对无穷维线性空间一无所知,因为没法用一组有限的基把其中元素表示出来,不能应用矩阵的性质。为此,必须要赋无穷维线性空间予拓扑结构,研究各拓扑的差异。

给线性空间以拓扑,最简单的做法,就是定义一个度量。称域

上线性空间
是赋范线性空间,若其上定义了范数
。所谓范数就是满足这三条性质的函数:

(1) 正定性:任意

都使得
当且仅当
(当然这两个
的含义不同);

(2) 齐次性:

,其中
的绝对值;

(3) 三角不等式:任意

都使得
成立。

其中绝对值

是所谓的广义绝对值,它本质上就是一个范数,它具有正定性和三角不等式,并且
,也就是说
是乘法群同态。根据
立刻就能定义度量,称其为范数诱导的度量,从而就给出了赋范线性空间上的拓扑。要证明
确实是度量,只需要注意到
,立刻得到
其中绝对值
上的标准绝对值。这还说明范数是
的连续映射,因为任意
,只需取
,那么任意使得
就能使得
。在范数诱导的度量拓扑下域
也成为度量空间,称这样的域是赋值域(valued field)。我们总是考虑非离散的赋值域,若它的拓扑不是离散拓扑。这条件等价于广义绝对值的值域不是

在范数诱导的度量拓扑之下,向量的加法和数乘是连续的。加法

的乘积拓扑下的连续性来自于范数的三角不等式。至于数乘
的连续性,首先要给域
一个拓扑,而这个拓扑通常就是用广义绝对值给出的度量来定义的。我们把
上的范数记为
,把
上的范数记为
,那么
,其中
,对于固定的
,不妨设
,从而就有
。从而对任意
,只要
就行。

称同一个线性空间上的两个不同范数

是等价的,若存在正实数
使得
对任意
成立。这是一种等价关系。这个定义当然是有道理的:

引理 同一个线性空间上的两个范数是等价的,当且仅当二者给出相同的拓扑。

是等价的,那么开球
满足
。根据度量空间中开集的定义,若
下是开集,也就是说对任意
存在
使得
,那么
,所以
定义的开集也是
定义的的开集。同理,
给出的开集也是
给出的开集,所以有相同拓扑。反过来,设两个范数
给出了相同的拓扑,考虑开球
,即以原点为球心的半径为1的开球,它是
的开集,所以存在开球
,也就是说若
,那么
。令
,其中
,那么
,同时
,从而
。这就得到了范数等价定义的其中一半,同理可得另一半。

现在可以阐述,为什么一定要在无穷维线性空间上定义拓扑:

定理 完备域上的有限维线性空间

上的任意两个拓扑都是等价的。

所谓完备域就是说广义绝对值诱导的度量使得域是完备度量空间,例如实数

的标准绝对值
,复数
上的标准长度
。无穷维的时候这定理是不正确的,例如考虑所有连续函数
的集合
,在逐点加法和逐点数乘下它是线性空间,并定义无穷范数
和1范数
。考虑尖突函数
,那么
。简单的反证法指出不存在一个固定的正实数
使得
对所有
成立。

下面来证明定理。令

的一组基,定义无穷范数
,其中
,也就是说无穷范数等于向量的分量的广义绝对值中最大的那一个。容易验证它是范数。由于域是完备域,无穷范数诱导的度量是完备的。由于范数的等价是等价关系,我们只需要证明任意范数
都与无穷范数等价。根据三角不等式,
是简单的。要证明
,首先证明
下的单位闭球
是紧集,且恒等映射
是连续的,那么紧性基本定理指出
下也是紧集。注意到
是连续的,所以在紧集
上能取到最小值,不妨令其为
,那么任意
,有
,从而
。证明单位闭球是紧集可以参照Riesz引理的方法。

下面我们只在完备域上讨论赋范线性空间,尤其是

这两个重要的域。由于无穷范数下有限维线性空间是完备的,所以任意有限维的赋范线性空间都是完备度量空间。称作为度量空间是完备度量空间的赋范线性空间为Banach空间。

单位闭球是紧集实际上就是有限维才能恒成立的事。在无穷维,单位闭球并不能总是紧集,从而本定理将变得毫无道理。然而Banach-Alaoglu定理指出赋范线性空间的对偶空间在弱*拓扑下的单位闭球一定是紧集。在后面里我们要详细研究弱拓扑和弱*拓扑。

首先来研究Lp空间,将其作为赋范线性空间的例子。令

是测度空间,对于
,对可测集
上定义的所有可测实函数
定义Lp范数
,这式子
时才有定义;当
,令
,也就是
上的几乎处处上确界。记所有
的集合为
,称其为Lp空间。当
,根据Lebesgue积分的性质,Lebesgue可积的函数的绝对值函数也是Lebesgue可积的,所以
就是所有
上Lebesgue可积的函数的集合。

在考虑Lp空间时常常要用如下两个不等式进行估计:

定理(Hölder)

,那么
。若
,那么等式成立,当且仅当
几乎处处成立。

其中

被称为Lebesgue共轭数。若
,则取
;若
,则
。当
,则
,此时的Hölder不等式被称为Cauchy–Bunyakovsky–Schwarz不等式:

定理(Cauchy–Bunyakovsky–Schwarz)

,那么

利用Hölder不等式可以得到:

定理(Minkowski)

,那么

这些不等式的证明可以参考任何一本讨论了Lp空间的教科书。最重要的是全空间上的Lp空间

。首先来证明它是线性空间:

命题

,那么
是线性空间。

也就是

,若
。用一元微分方法可以得到几何-算术均值不等式:
,其中
,根据这个不等式,立刻有
,从而
。若
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值