royden实分析 翻译+部分习题 1.2 THE NATURAL AND RATIONAL NUMBERS

THE NATURAL AND RATIONAL NUMBERS

将自然数定义为 1 , 2 , 3 , . . . . . . 1,2,3,... ... 1,2,3,......实际上是一种临时的做法,我们有必要令其变得更加精确,为此,我们需要首先介绍可归纳集的概念。

定义 有一集合E,如果在 x ∈ E x\in E xE的情况下有 ( x + 1 ) ∈ E (x+1)\in E (x+1)E,并且 1 ∈ E 1\in E 1E,那么称E为可归纳集。

整个实数集是可归纳的,由不等式 1 ≥ 0 1\geq 0 10可知,集合 { x ∈ R ∣ x ≥ 0 } \{x\in R|x\geq 0\} {xRx0}和集合 { x ∈ R ∣ x ≥ 1 } \{x\in R|x\geq 1\} {xRx1}也是可归纳的,自然数集合N是R中所有可归纳子集的交,于是N也是可归纳的。实际上N可归纳是一个显然的结论: 1 ∈ N 1\in N 1N并且 ( x + 1 ) ∈ N   . i f f   x ∈ N (x+1)\in N\ .iff\ x\in N (x+1)N .iff xN

那个一切子集的交有点意思,我琢磨着是说,R中一切归纳集都具备有形式 { ( 1 − ϵ , 1 + ϵ ) , ( 2 − ϵ , 2 + ϵ ) , . . .   . . . , ( n − ϵ , n + ϵ ) , . . .   . . . } ∀ ϵ ∈ ( 0 , 1 ) \{(1 - \epsilon,1 + \epsilon),(2-\epsilon,2+\epsilon), ...\ ...,(n-\epsilon,n+\epsilon),...\ ...\}\forall \epsilon \in (0,1) {(1ϵ,1+ϵ),(2ϵ,2+ϵ),... ...,(nϵ,n+ϵ),... ...}ϵ(0,1),其中小括号表示开集,那么所有这种集合的交就是自然数集。

数学归纳原理,对于任意自然数 n n n和一个数学断言 S ( n ) S(n) S(n),假设 S ( 1 ) S(1) S(1)成立,如果在 S ( n ) S(n) S(n)成立的情形下必有 S ( n + 1 ) S(n+1) S(n+1)也成立,那么对于任意自然数 n n n都必有 S ( n ) S(n) S(n)成立。

证明:定义 A = { k ∈ N ∣ S ( k )   i s   t r u e } A=\{ k\in N|S(k)\ is\ true \} A={kNS(k) is true},于是由假设可知,A是一个可归纳集,那么 N ⊆ A N\subseteq A NA为显然(N是所有可归纳集的交),于是 S ( N ) S(N) S(N)全为true。

定理1: 每一个非空自然数集合都有一个最小数。

证明:令 E E E是一个非空自然数集合,依据定义, E E E必有一个下界 1 1 1,按照完备公理, E E E必有下确界 c c c,于是 c + 1 c+1 c+1必不是 E E E的下界,于是必定存在一个自然数 m m m使得 m < c + 1 , m ∈ E m<c+1,m\in E m<c+1,mE,这个 m m m就是 E E E的最小值。

(反证法开始),如若 m m m不是 E E E的最小值,则必有另一个自然数 n < c + 1 n<c+1 n<c+1使得 n < m n<m n<m,也就是说,必定有 c < n < m < c + 1 c<n<m<c+1 c<n<m<c+1,于是 m < n + 1 m<n+1 m<n+1,换而言之 m ∈ ( n , n + 1 ) m\in (n,n+1) m(n,n+1),然而 ( n , n + 1 ) ∩ N = ∅ (n,n+1)\cap N = \emptyset (n,n+1)N=矛盾。说白了,随便一个 c ∈ R c\in R cR c + 1 c+1 c+1之间最多一个自然数,两个是不可能的。

阿基里德属性:对于任意两个正实数 a a a b b b,总是存在有一个自然数使得 n a > b na>b na>b

证明:假设存在有 a a a b b b使得结论不成立,令 c = b a > 0 c=\frac{b}{a}>0 c=ab>0,则c为全体自然数的一个上界,依据完备公理,必存在有有 c ′ < c c'<c c<c为全体自然数的上确界,那么 c ′ − 1 c'-1 c1必不是自然数上界,我们选择一个 n ∈ N , n > c ′ − 1 n\in N,n>c'-1 nN,n>c1,于是 n + 1 > c ′ n+1>c' n+1>c,然而自然数是归纳集,于是 n + 1 n+1 n+1也是一个自然数,那么 c ′ c' c就不是自然数上确界了,矛盾。

我们使用阿基里德属性的一般方式是,对于任意正实数 ϵ \epsilon ϵ,总是存在一个自然数使得 1 n < ϵ \frac{1}{n}<\epsilon n1<ϵ.

整数Z:自然数,自然数的相反数和0。有理数Q:自然数的商。无理数:不能表示为自然数商的数。

定义:对于R中一个子集E,如果E中任意两个数之间还有一个数,那么称E在R中稠密(dense)

证明:令 a a a b b b都是实数,假设有 a < b a<b a<b,于是有两个case: a > 0 a>0 a>0 a < 0 a<0 a<0

case 1: a > 0 a>0 a>0由R的阿基里德属性可知,总是存在一个有理数q使得 1 q < b − a \frac{1}{q} < b-a q1<ba再次使用阿基里德属性就有 S = { n ∈ N ∣ n q ≥ b } S=\{n\in N | \frac{n}{q}\geq b\} S={nNqnb}是一个非空集合。依据定理1, S S S必有一个最小数 p p p。观察知 1 q < b − a < b \frac{1}{q}<b-a<b q1<ba<b于是 p > 1 p>1 p>1为显然,并且 p − 1 p-1 p1是一个自然数。通过选择最小值p使得 ( p − 1 ) q < b \frac{(p-1)}{q}<b q(p1)<b立刻就有 a = b − ( b − a ) < ( p / q ) − ( 1 / q ) = ( p − 1 ) / q a=b-(b-a)<(p/q)-(1/q)=(p-1)/q a=b(ba)<(p/q)(1/q)=(p1)/q于是 ( p − 1 ) / q (p-1)/q (p1)/q ( a , b ) (a,b) (a,b)中为显然。

这里, q q q的选择实际上划分了区间长度,我们总是能通过 q q q的选择构造一个比 ( a , b ) (a,b) (a,b)“更小的区间”, S S S的构造是说,堆叠“足够多”的这样的小区间之后,总是能大于 b b b,于是 p − 1 p-1 p1的选择实际上是选了 S S S补集的最大值,也就是说堆叠“不那么多”的“更小的区间”,当然是小于 b b b的。
不等式 1 1 1实际上是将 a a a b b b表示出来,于是 S S S能帮助选择一个比 b b b“稍微大一点”的有理数, q q q能帮助构造一个比 ( a , b ) (a,b) (a,b)更小的区间,于是不等式是显然的。

case 2: a < 0 a<0 a<0
先取 − a -a a,必存在有自然数 n > − a n>-a n>a恒成立,由case 1知道,必存在有有理数 r ∈ ( n + a , n + b ) r\in (n+a,n+b) r(n+a,n+b),那么 r − n r-n rn ( a , b ) (a,b) (a,b)之间为显然。

Problem

  1. Use an induction argument to show that for each natural number n n n, the interval ( n , n + 1 ) (n, n + 1) (n,n+1) fails to contain any natural number.
    Proof:
    case n = 1 n=1 n=1: ( 1 , 2 ) (1,2) (1,2)之间没有自然数为显然。
    case n = k → n = k + 1 n=k \rightarrow n=k+1 n=kn=k+1:令 ( k , k + 1 ) (k,k+1) (k,k+1)之间没有自然数,下面使用反证法:假设 ( k + 1 , k + 2 ) (k+1,k+2) (k+1,k+2)之间存在一个自然数 m m m,则必有 ( m − 1 ) ∈ ( k , k + 1 ) (m-1)\in (k,k+1) (m1)(k,k+1)也是一个自然数,矛盾!于是若 ( k , k + 1 ) (k,k+1) (k,k+1)之间没有自然数,那么 ( k + 1 , k + 2 ) (k+1,k+2) (k+1,k+2)之间也没有,归纳完备。

  2. Use an induction argument to show that if n > 1 n > 1 n>1 is a natural number, then n − 1 n - 1 n1 also is a natural number. Then use another induction argument to show that if m m m and n n n are natural numbers with n > m n > m n>m, then n − m n - m nm is a natural number.
    Proof:
    第一问归纳法:
    case n = 2 n=2 n=2:于是 n − 1 = 1 n-1=1 n1=1是自然数为显然。
    case n = k n=k n=k:假设 k k k为自然数时, k − 1 k-1 k1为自然数,于是对于 k + 1 k+1 k+1而言, k + 1 − 1 = k ∈ N k+1-1=k\in N k+11=kN为显然,归纳完备。
    第二问归纳法:
    两次归纳:先令 m = 1 m=1 m=1归纳 n n n,然后放开 m m m归纳m,懒得写了,显然的。

  3. Show that for any integer n, there is exactly one integer in the interval [n, n + 1).
    Proof:
    n ∈ N n\in N nN并且 n ∈ [ n , n + 1 ) n\in [n,n+1) n[n,n+1)为显然,套用8, ( n , n + 1 ) = [ n , n + 1 ) / n (n,n+1) = [n,n+1)/{n} (n,n+1)=[n,n+1)/n中没有其他自然数,于是成立。

  4. Show that any nonempty set of integers that is bounded above has a largest member
    Proof:
    令该集合为 Z ′ Z' Z,其有上界必有上确界 E = sup ⁡ Z ′ E = \sup Z' E=supZ ( E − 1 , E ) (E-1,E) (E1,E)之间存在一个整数 z z z为显然,依据问题8有另一个整数是不可能的,于是 z z z就是最大值。

  5. Show that the irrational numbers are dense in R.
    Proof:
    若无理数不是稠密的,必定能选一实数区间,令其中全部是有理数,然而有理数是可数的,这与R不可数矛盾。

  6. Show that each real number is the supremum of a set of rational numbers and also the supremum of a set of irrational numbers.
    Proof:
    对于任意一个实数r,构造一列有理数序列: S r a t i o n a l = r 2 , r 4 , . . . . . . r 2 n , r ∈ R , n = ( 1 , 2 , . . . . . . ) S_{rational} = \frac{r}{2},\frac{r}{4},......\frac{r}{2^n},r\in R,n=(1,2, ......) Srational=2r,4r,......2nr,rR,n=(1,2,......)
    构造一列无理数序列: S r a t i o n a l = r 2 − 2 , r ( 2 − 2 ) 2 , . . . . . . r ( 2 − 2 ) n , r ∈ R , n = ( 1 , 2 , . . . . . . ) S_{rational} = \frac{r}{2-\sqrt{2}},\frac{r}{(2-\sqrt{2})^2},......\frac{r}{(2-\sqrt{2})^n},r\in R,n=(1,2, ......) Srational=22 r,(22 )2r,......(22 )nr,rR,n=(1,2,......)显然的,这两个序列都收敛于 r r r

  7. Show that if r > 0 r > 0 r>0, then, for each natural number n n n, ( 1 + r ) n ≥ 1 + n ∗ r (1 + r)^n\geq 1+n*r (1+r)n1+nr.
    Proof:
    case n = 1 n=1 n=1: 等号成立。case n = 2 n=2 n=2:大于号成立
    假设对于 n = i n=i n=i成立,于是 ( 1 + r ) i ≥ 1 + i ∗ r (1 + r)^i\geq 1+i*r (1+r)i1+ir。 case n = i + 1 n=i+1 n=i+1时有: ( 1 + r ) i + 1 = ( 1 + r ) i ( 1 + r ) = ( 1 + r ) i + r ( 1 + r ) i > 1 + i ∗ r + r ( 1 + r ) i > 1 + i ∗ r + r > 1 + ( i + 1 ) ∗ r (1 + r)^{i+1} = (1 + r)^i(1+r) = (1 + r)^i + r(1 + r)^i>1+i*r + r(1 + r)^i>1+i*r+r>1+(i+1)*r (1+r)i+1=(1+r)i(1+r)=(1+r)i+r(1+r)i>1+ir+r(1+r)i>1+ir+r>1+(i+1)r注意这里 r ( 1 + r ) i > r r(1 + r)^i>r r(1+r)i>r即可

  8. Use induction arguments to prove that for every natural number n,
    ∑ j = 1 n j 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{j=1}^{n}j^2 = \frac{n(n+1)(2n+1)}{6} j=1nj2=6n(n+1)(2n+1)
    1 3 + 2 3 + . . . . . . + n 3 = ( 1 + 2 + . . . . . . + n ) 2 1^3+2^3+......+n^3=(1+2+......+n)^2 13+23+......+n3=(1+2+......+n)2
    1 + r + . . . . . . + r n = 1 − r ( n − 1 ) 1 − r , r ≠ 1 1+r+......+r^n=\frac{1-r^(n-1)}{1-r},r\neq 1 1+r+......+rn=1r1r(n1),r=1
    等式基本都是显然的,懒得归纳了。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值