Royden 实分析 翻译+部分习题 1.1

1.1 THE FIELD, POSITIVITY, AND COMPLETENESS AXIOMS

我们假设读者对于实数,实属集合,实数序列和单实值函数的性质都很熟悉,这些应该是在本科分析课本上讨论的。对于实变量的理解能帮助读者更好的理解这一章,我们将在这一章很快的建立一些以后会用的结论。我们假设实数集合满足三公理,使用 R R R来表示它。我们从自然数,有理数和可数集的基本性质来推导一些公理。在这些背景之上,我们建立起实数中开集,闭集的属性;实数上收敛,单调以及柯西序列;单实变函数的连续性。
我们对于每一对实数a和b,定义其在R上有 a + b a+b a+b a b ab ab,分别称作是“和”和“积”,a和b分别满足以下域公理,正性公理和完备公理。
域公理
加法交换: a + b = b + a a+b = b+a a+b=b+a
加法结合: a ∗ b = b ∗ a a*b = b*a ab=ba
加运算下存在单位元0使得: a + 0 = 0 + a , ∀ a ∈ R a+0 = 0+a,\forall a\in R a+0=0+a,aR
对于任意a,加运算存在一个b使得: a + b = 0 a+b = 0 a+b=0
乘法交换: a b = b a ab = ba ab=ba
乘法结合: a ( b c ) = ( a b ) c a(bc) = (ab)c a(bc)=(ab)c
乘运算下存在单位元1使得: a 1 = 1 a , ∀ a ∈ R a1=1a,\forall a\in R a1=1a,aR
对于任意a,乘法下存在逆元b使得: a b = 1 ab=1 ab=1
分配率: a ( b + c ) = a b + a c a(b+c)=ab+ac a(b+c)=ab+ac
非trivial定理: 0 ≠ 1 0\neq 1 0=1
任何满足这些公理的集合都称为域。从加法的交换性推出加法的单位 0 0 0是唯一的,我们从乘法的交换性推出乘法的单位 1 1 1也是唯一的。加法逆和乘法逆也是唯一的。我们用 − a -a a来表示 a a a的加法逆,如果 a ≠ 0 a\neq0 a=0,它的乘法逆用 a − 1 a^{-1} a1 1 / a 1/a 1/a来表示。如果我们有一个域,我们可以进行初等代数的所有运算,包括线性方程组的解。我们使用这些公理的各种结果,但没有明确提到。
正性公理
在实数中有一个自然的顺序概念:大于,小于等等。对这些性质进行编码的一种方便的方法是指定一组正数所满足的公理。有一组实数,用P表示,叫做正数的集合。它有以下两个属性:
P1 如果 a a a b b b是正的,那么 a b ab ab a + b a+b a+b也是正的。
P2 对于实数a,下面三个选项中的一个是正确的: a > 0 , a < 0 , a = 0 a>0,a<0,a=0 a>0,a<0,a=0
正性公理为实数的排序提供了一种自然的方式,对于实数a和b,如果有 a − b > 0 a-b>0 ab>0,那么就有 a > b a>b a>b a ≥ b a\geq b ab等价于 a > b   o r   a = b a>b\ or\ a=b a>b or a=b,相应的, a < b a<b a<b a ≤ b a\leq b ab也是对应的意思。
使用域公理和正性公理,我们可以公理化建立不等式形式(如习题2那样)。给定实数a和b,假设有 a < b a<b a<b,我们定义 ( a , b ) = { x ∣ a < x < b } {(a,b) = \{ x|a<x<b \}} (a,b)={xa<x<b},将 x x x描述为 a a a b b b中的一点,这样的集合,我们称作一个区间。区间两端点之间所有的点都属于这个区间,当然的,集合 ( a , b ) (a,b) (a,b)是一个区间,下面这样的也是区间: [ a , b ] = { x ∣ a ≤ x ≤ b } ; [ a , b ) = { x ∣ a ≤ x < b } ; ( a , b ] = { x ∣ a < x ≤ b } [a,b]=\{ x|a\leq x\leq b \}; [a,b)=\{ x|a\leq x< b \};(a,b]=\{ x|a< x\leq b \} [a,b]={xaxb};[a,b)={xax<b};(a,b]={xa<xb}
完备公理
对于一个非空实数集 E E E,如果有 x ≤ b , ∀ x ∈ E x\leq b,\forall x\in E xb,xE,那么称E上有界,b为E的一个上界,相似的,“下有界”和“下界”的定义也是类似的。上有界集合不必有最大值,但可以有最小的上界。
完备公理————上有界的非空实数集 E E E必有一个最小的上界。
如果E上有界,最小上界称作上确界,记作 sup ⁡ E \sup E supE,如果E下有界,最大下界称作下确界,记作 inf ⁡ E \inf E infE
三角不等式
我们定义 x x x的绝对值为 ∣ x ∣ |x| x,定义 ∣ x ∣ = x , i f   x ≥ 0 |x|=x,if\ x\geq 0 x=x,if x0 ∣ x ∣ = − x , i f   x < 0 |x|=-x,if\ x<0 x=x,if x<0于是我们迅速得到三角不等式 ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a+b|\leq |a|+|b| a+ba+b
扩展实数集
引入正无穷和负无穷的概念有很多好处,这里我们将 R ∪ ± ∞ R\cup \pm\infty R±称作扩展实数,很明显的,在扩展实数中,上有界非空实数集一定存在上界,下有界非空实数集一定存在下界,这为后面序列极限的很多性质带来好处,它们能很方便的定义在扩展实数上。

problem

  1. For a ≠ 0 a\neq 0 a=0 and b ≠ 0 b\neq 0 b=0, show that ( a b ) − 1 = a − 1 b − 1 (ab)^{-1} = a^{-1}b^{-1} (ab)1=a1b1.
    证明:实数域上必存在有唯一的 c ∈ R c\in R cR使得 ( a b ) − 1 c = 1 (ab)^{-1}c=1 (ab)1c=1,于是 c = a b c=ab c=ab为显然。对于等式右边,我们有 ( a − 1 b − 1 ) c = a − 1 b − 1 a b = a − 1 a b b − 1 = 1 (a^{-1}b^{-1})c = a^{-1}b^{-1}ab = a^{-1}abb^{-1}=1 (a1b1)c=a1b1ab=a1abb1=1,于是等式左边在乘运算下的逆元和等式右边在乘运算下的逆元是相等的,而乘运算下$ c\in R $有且仅有一个逆元,所以等式成立.
  2. Verify the following:(这题不会)
    (i) For each real number a ≠ 0 a\neq 0 a=0, a 2 > 0 a^2>0 a2>0. In particular, 1 > 0 1 > 0 1>0 since 1 ≠ 0 1 \neq 0 1=0 and 1 = 1 2 1 = 1^2 1=12.
    (ii) For each positive number a, its multiplicative inverse a − 1 a^{-1} a1 also is positive.
    (iii) If a > b a>b a>b, then a c > b c ac>bc ac>bc if c > 0 c>0 c>0 and a c < b c ac<bc ac<bc if c < 0 c<0 c<0.
  3. For a nonempty set of real numbers E, show that inf ⁡ E = sup ⁡ E \inf E = \sup E infE=supE if and only if E consists of a single point.
    证明:E中任取一点x都有 inf ⁡ E ≤ x ≤ sup ⁡ E \inf E \leq x\leq \sup E infExsupE,而 inf ⁡ E = sup ⁡ E \inf E = \sup E infE=supE,于是必有 x = inf ⁡ E = sup ⁡ E x = \inf E = \sup E x=infE=supE为一单点。
  4. Let a a a and b b b be real numbers.
    (i) Show that if a b = 0 ab = 0 ab=0, then a = 0 a = 0 a=0 or b = 0 b = 0 b=0.
    证明:若 a > 0 , b > 0 a>0,b>0 a>0,b>0或者 a < 0 , b < 0 a<0,b<0 a<0,b<0,负值取加运算逆元,必有 a b > 0 ab>0 ab>0,若 a > 0 , b < 0 a>0,b<0 a>0,b<0或者 a < 0 , b > 0 a<0,b>0 a<0,b>0,负值取加运算逆元,必有 a b < 0 ab<0 ab<0,所以 a , b a,b a,b中必有一个为0.
    (ii) Verify that a 2 − b 2 = ( a − b ) ( a + b ) a^2 - b^2 = (a - b) (a + b) a2b2=(ab)(a+b) and conclude from part (i) that if a 2 = b 2 a^2 = b^2 a2=b2, then a = b a = b a=b or a = − b a = -b a=b. (trivial)
    (iii) Let c c c be a positive real number. Define E = { x ∈ R ∣ x 2 < c . } E = \{x\in R | x^2 < c.\} E={xRx2<c.} Verify that E E E is nonempty and bounded above. Define x 0 = sup ⁡ E x_0=\sup E x0=supE. Show that x 0 2 = c x_0^2 = c x02=c. Use part (ii) to show that there is a unique x > 0 x > 0 x>0 for which x 2 = c x^2 = c x2=c. It is denoted by c \sqrt{c} c .
    证明:若E为空,必有 c ≤ 0 c\leq 0 c0,矛盾,所以E是 b o u n d bound bound的。如果还有 x 1 2 = c x_1^2=c x12=c,必有$ x_0=\pm x_1 , 由 于 E 是 ,由于E是 Ebound 的 , 所 以 的,所以 x_1=x_0=\sqrt{c}$
  5. Let a , b , a, b, a,b, and c c c be real numbers such that a ≠ 0 a\neq 0 a=0 and consider the quadratic equation a x 2 + b x + c = 0 , X ∈ R ax^2+bx+c=0, X\in R ax2+bx+c=0,XR
    (i) Suppose b 2 − 4 a c > 0 b^2 - 4ac > 0 b24ac>0. Use the Field Axioms and the preceding problem to complete the square and thereby show that this equation has exactly two solutions given by x = − b + b 2 − 4 a c 2 a   a n d   x = − b − b 2 − 4 a c 2 a x = \frac{-b + \sqrt{b^2-4ac}}{2a}\ and\ x = \frac{-b - \sqrt{b^2-4ac}}{2a} x=2ab+b24ac  and x=2abb24ac
    证明:域公理实际上满足了实数集上的四则运算,结合4中(i)的证明,这题是trivial的。
    (ii) Now suppose b 2 − 4 a c < 0 b^2 - 4ac < 0 b24ac<0. Show that the quadratic equation fails to have any solution.
    证明:开方之后无实数,便没有实数解。
  6. Use the Completeness Axiom to show that every nonempty set of real numbers that is bounded below has an infimum and that inf ⁡ E = − sup ⁡ { − x ∣ x ∈ E } \inf E=-\sup\{-x|x\in E\} infE=sup{xxE}.
    证明:E有下界,依据完备公理,E必存在下确界,那么-E必有上界,它必存在上确界。此外 x ≥ inf ⁡ x ↔ − x ≤ − inf ⁡ x x\geq \inf x \leftrightarrow -x\leq -\inf x xinfxxinfx于是 − inf ⁡ x -\inf x infx就是 − x -x x集合的上确界为显然。
    7.For real numbers a a a and b b b, verify the following:
    (i) ∣ a b ∣ = ∣ a ∣ ∣ b ∣ |ab| = |a||b| ab=ab
    (i) ∣ x ∣ = ± x |x|=\pm x x=±x,两边都大于0,于是结论为trivial
    (ii) ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a+b| \leq |a|+|b| a+ba+b
    (ii)做差 f = ∣ a + b ∣ − ∣ a ∣ − ∣ b ∣ f = |a+b|-|a|-|b| f=a+bab,一共6个case: a > 0 , b > 0 , a + b > 0 a>0,b>0,a+b>0 a>0,b>0,a+b>0 a < 0 , b < 0 , a + b < 0 a<0,b<0,a+b<0 a<0,b<0,a+b<0 a > 0 , b < 0 , a + b < 0 a>0,b<0,a+b<0 a>0,b<0,a+b<0 a > 0 , b < 0 , a + b > 0 a>0,b<0,a+b>0 a>0,b<0,a+b>0 a < 0 , b > 0 , a + b < 0 a<0,b>0,a+b<0 a<0,b>0,a+b<0 a < 0 , b > 0 , a + b < 0 a<0,b>0,a+b<0 a<0,b>0,a+b<0均有 f ≤ 0 f\leq 0 f0,于是结论成立。
    (iii) For ϵ > 0 \epsilon > 0 ϵ>0, ∣ x − a ∣ < ϵ   . i f f   a − ϵ < x < a + ϵ |x - a|<\epsilon\ .iff\ a - \epsilon< x < a +\epsilon xa<ϵ .iff aϵ<x<a+ϵ
    (iii)一共两个case: x − a > 0 → x < a + ϵ x-a>0\rightarrow x<a+\epsilon xa>0x<a+ϵ x − a < 0 → − x + a < ϵ → x > a − ϵ x-a<0 \rightarrow -x+a<\epsilon \rightarrow x>a-\epsilon xa<0x+a<ϵx>aϵ要想充分必要,这两个需要同时满足,于是结论成立。
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值