引言
7 月 23 日 2 时 41 分,我国首个独立火星探测器“天问一号”成功发射。中华民族对于外太空的探索从来没有停止自己的脚步,“天问一号”巧用屈原长诗《天问》表达了中华民族对真理追求的坚韧和执着!那么“天问一号”是怎样去火星的?和地球上两点之间往返不同,去火星要复杂得多。地球和火星都是环绕太阳旋转的行星,而由于椭圆形轨道的半径不同,两者公转周期也不同,导致地球和火星之间的直线距离呈周期性变化。最近时为 5460 万千米,最远时可达 4 亿千米。因此需要提前对探测器飞行路线进行规划。

理论上探测器可以沿着任意路径到达火星,但是有一条称为“霍曼转移轨道”的飞行路径效率最高。该轨道是由德国物理学家霍曼在 1925 年首次提出的,途中只需两次引擎推进,相对节省燃料。

例如图 2 是将航天器从低轨道 1 送往较高轨道 3 的霍曼转移轨道。航天器在原先轨道 1 上瞬间加速后,进入一个椭圆轨道 2。航天器由此椭圆轨道的近拱点开始,抵达远拱点后再瞬间加速,进入另一个圆轨道 3,此即为目标轨道。要注意的是,三个轨道的半长轴是越来越大的,因此两次引擎推进皆是加速。

对于地球到火星的霍曼转移轨道,若取地球和火星的椭圆形轨道为近似圆形轨道,则霍曼转移轨道呈环绕太阳的椭圆形。近日点在地球轨道,远日点在火星轨道。从地球发射的飞船首先加速到霍曼转移轨道速度,到达火星轨道后再加速到火星环绕速度。若要降落火星地表,则可省去第二次加速直接坠入火星。为了探测器和火星同时到达同一个点,探测器必须在特定的时间范围内发射。这个特定的时间范围称为“发射窗口”。若错过“发射窗口”,则需要再等两年多的时间。

本文使用简单的数理知识建立模型来确定“发射窗口”期间地球和火星的相对位置,并确定两次“发射窗口”之间的时间间隔。
模型
为了描述地球、火星和探测器的运动,我们需要一个以太阳为参照点的坐标系。如图 5 所示,我们以地球绕太阳公转的轨道平面(黄道)作为基准平面,用 0

地球和火星,以及火星探测器的动力学是非常复杂的。为了简化问题,我们做出了一些假设:
- 地球和火星的轨道都是以太阳为中心的圆。实际上地球和火星的轨道并不是圆,而是略呈椭圆。相比之下,地球的轨道比火星更圆。
- 地球和火星都以恒定的速度绕太阳运动。由普勒第二定律可知,单位时间内行星与太阳的连线所扫过的面积相等。因此行星在近日点速度大,在远日点速度小。但由于地球和火星的轨道非常接近圆,因此公转过程中速度变化不太。
- 地球和火星的轨道在同一平面上。实际上地球和火星的公转轨道并不在同一平面内,但两平面非常接近,仅有微小的夹角。
注意,以上假设严格上来讲都不正确。但在这些假设下,问题将得到极大地简化,并且在此基础上对“发射窗口”计算的精度已经足够说明问题。

为了方便演示(图 6),我们将地球放置于日心经度为 0


地球到太阳的平均距离为 1 个天文单位,即 1.0 AU。而火星到太阳的平均距离为 1.524 AU。因此很容易计算出霍曼转移轨道半长轴为
开普勒第三定律指出,绕以太阳为焦点的椭圆轨道运行的所有行星,其公转周期
其中
同样,还可以求出探测器绕椭圆形霍曼转移轨道运动的周期为
从地球到达火星,只需要沿着霍曼转移轨道飞行半周,因此大约需要 259 天。
火星绕太阳公转一周(360
要计算探测器发射时火星的位置,则从火星接受到探测器的位置(180

接下来我们考虑如果错过发射窗口,需要多长时间才能等到下一次发射窗口。由于地球公转的角速度大于火星,只要地球刚好比火星多绕太阳转一周时,就是下一次发射窗口(图 10)。

因此,两次发射窗口的时间间隔
代入地球和火星的公转周期可得
从几何角度解释也容易理解:在 779 天内地球绕太阳运动了 2 周 48 度角,火星运动了 1 周 48 度角,火星和地球的相对位置又回到了 779 天前(相差 44
实践
在上文的模型中,我们介绍了霍曼转移轨道,并计算得到了“发射窗口”期间地球和火星的相对位置,以及两次“发射窗口”的时间间隔。我们还可以动手绘制霍曼转移轨道。首先准备一张方格纸,并约定 1 分米表示一个天文单位。然后把一颗图钉固定在方格纸的正中间,表示太阳的位置。将绳长分别调整到

接下来我们绘制表示霍曼转移轨道的椭圆。椭圆的焦距为 0.26 分米,表示太阳的图钉是椭圆的一个焦点。如果我们认为太阳的坐标为 (0,0),则椭圆的另一个焦点为 (-0.52,0),我们在该焦点处也固定一颗图钉。把绳长调整为椭圆半长轴与焦距之和两倍长度,即

结论
本文通过建立数学型和实践绘图,介绍了“霍曼转移轨道”,并计算得到了“发射窗口”为火星的太阳经度领先地球 44
参考资料
[1] Wikipedia contributors. Tianwen-1 — Wikipedia, the free encyclopedia, 2020: https://en.wikipedia.org/wiki/Tianwen-1
[2] California Institute of Technology. Jet propulsion laboratory, 2020: https://www.jpl.nasa.gov/edu/teach/activity/lets-go-to-mars-calculating-launch-windows/
[3] Ariel Zych. Scale solar system orbits—and satellites!, 2018: https://www.sciencefriday.com/educational-resources/scale-solar-system-orbits-and-satellites/