基于每棵树大小的优化
- 在并查集中增加了一个数组sz,用于表示并查集中以每个元素为根的树的大小,依次作为合并时谁合并于谁的依据;
- 节点少的树往节点大的树合并,更不容易增加合并后树的深度;
- 两棵树在合并的时候,如果不加考虑,那么最后合并成的树有可能退化成一个链表;
public class UnionFind3 implements UF{
private int[] parent; // parent[i]表示第一个元素所指向的父节点
private int[] sz; // sz[i]表示以i为根的集合中元素个数
// 构造函数
public UnionFind3(int size){
parent = new int[size];
sz = new int[size];
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for(int i = 0 ; i < size ; i ++){
parent[i] = i;
sz[i] = 1;
}
}
@Override
public int getSize(){
return parent.length;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
private int find(int p){
if(p < 0 || p >= parent.length)
throw new IllegalArgumentException("p is out of bound.");
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
@Override
public boolean isConnected( int p , int q ){
return find(p) == find(q);
}
}
基于两棵树size优化后的合并方法
- 两棵树谁的节点少,就合并于节点多的树;
- 合并完了更新一下节点更多的那棵树的节点的数量;
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
@Override
public void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if(pRoot == qRoot)
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if(sz[pRoot] < sz[qRoot]){
parent[pRoot] = qRoot;
sz[qRoot] += sz[pRoot];
}
else{ // sz[qRoot] <= sz[pRoot]
parent[qRoot] = pRoot;
sz[pRoot] += sz[qRoot];
}
}
性能比较
import java.util.Random;
public class Main {
private static double testUF(UF uf, int m){
int size = uf.getSize();
Random random = new Random();
long startTime = System.nanoTime();
for(int i = 0 ; i < m ; i ++){
int a = random.nextInt(size);
int b = random.nextInt(size);
uf.unionElements(a, b);
}
for(int i = 0 ; i < m ; i ++){
int a = random.nextInt(size);
int b = random.nextInt(size);
uf.isConnected(a, b);
}
long endTime = System.nanoTime();
return (endTime - startTime) / 1000000000.0;
}
public static void main(String[] args) {
// UnionFind2 慢于 UnionFind1, 但UnionFind3最快
int size = 100000;
int m = 100000;
UnionFind1 uf1 = new UnionFind1(size);
System.out.println("UnionFind1 : " + testUF(uf1, m) + " s");
UnionFind2 uf2 = new UnionFind2(size);
System.out.println("UnionFind2 : " + testUF(uf2, m) + " s");
UnionFind3 uf3 = new UnionFind3(size);
System.out.println("UnionFind3 : " + testUF(uf3, m) + " s");
}
}
输出:
- 基于两棵树的size的优化后的速度有明显的优势;
- 至于为什么用数组一维表示的并查集的速度比把数组构建成树的并查集的速度快,那是因为JVM对一段连续内存空间的遍历操作做了非常好的优化,而用数组表示的树结构,其操作是在数组间跳来跳去,所以速度更慢;
UnionFind1 : 5.9921952 s
UnionFind2 : 13.0992546 s
UnionFind3 : 0.018073399 s