(图片from http://www.cnblogs.com/zhangchaoyang/articles/2624882.html)
假设x是二维的,那么上述公式为:
=cov(x0,x1),是x1和x0的协方差。
单高斯分布
假设特征x是一维(仅仅考虑点的x坐标)的,高斯分布是:(from这篇博客)
假设特征是二维(x坐标和y坐标,意义能够是身高和体重)的,聚类的效果应该是:
在上面两张图中。我们用EM—GMM算法做聚类。用的是单个高斯函数描写叙述一个类别(男一个。女一个)。
如用一维高斯描写叙述了男生和女生的身高分布。
高斯混合分布
可是假设统计的这些身高同一时候有荷兰人(高)和刚果人(矮),这个单高斯模型会出什么问题?
显然用一个高斯分布来描写叙述男女身高是不行了,这样就须要混合高斯模型。如:
【π表示各种人(荷兰男人、荷兰女人、刚果男人、刚果女人)所占的比例】
如今有一批男人身高数据(荷兰男人+刚果男人)。我们能够參照这篇博客的EM方法得到
同理。能够得到女人身高的双高斯分布。
这样。用混合双高斯分布来推断 “荷兰美眉” 的性别就对了。【即将“荷兰美眉”的特征向量X带入Gm和Gf求概率】
混合高斯模型GuassMixtureModel
假设这时候中国人、美国人也混入这批身高数据,二维的高斯模型将不足以刻画数据分布,须要考虑使用4高斯混合分布。
当GMM中的高斯分布越多,对数据的刻画将越仔细(当然须要的训练数据就很多其它,计算量也会更大)。