问题:
Write a program to find the nth super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes
of size k
. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32]
is the sequence of the first 12 super ugly numbers given primes
= [2, 7, 13, 19]
of size 4.
Note:
(1) 1
is a super ugly number for any given primes
.
(2) The given numbers in primes
are in ascending order.
(3) 0 < k
≤ 100, 0 < n
≤ 106, 0 < primes[i]
< 1000.
(4) The nth super ugly number is guaranteed to fit in a 32-bit signed integer.
解决:
【题意】找到第n个超级丑陋数。
超级丑陋数是一个素数,其所有的素数因子都在给定的素数列表中。
例如:[1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32]是前12个超级丑陋数的序列,其所有素数因子都在给定的素数列表[2,7,13,19]中,其大小为4.
https://segmentfault.com/a/1190000004187449
① 动态规划。由丑陋数的定义我们可以知道,除了第一个数字,其余所有数字都是之前已有数字乘以任意一个在素数数组里的素数。例如,素数列表为[2,7,13,19],结果为7。
由于我们不知道质数的个数,我们可以用一个index数组来保存当前的位置,然后我们从每个子链中取出一个数,找出其中最小值,然后更新index数组对应位置。
注意对于已有序列中的数,乘不同质数得到的结果会可能存在重复,比如题目中例子2, 7与7, 2就重复了,解决方法很简单,就是只要是等于最小的结果,就增加对应index数组中的元素。
设dp[i]代表第i个Super Ugly Number,index[i]表示第i个质数应该和第几个质数相乘。
class Solution {//26ms
public static int nthSuperUglyNumber(int n, int[] primes) {
int[] index = new int[primes.length];//丑陋数结果集中下一个要与超级丑陋数相乘的数的下标
int[] res = new int[n];//保存超级丑陋数
res[0] = 1;
for (int i = 1;i < n;i ++){
int min = Integer.MAX_VALUE;
for (int j = 0;j < primes.length;j ++){
int tmp = primes[j] * res[index[j]];
if (min > primes[j] * res[index[j]]){
min = primes[j] * res[index[j]];
}
}
for (int j = 0;j < primes.length;j ++){//如果已经存储到丑陋数结果集中,更新数组下标的位置
if (min == primes[j] * res[index[j]]){
index[j] ++;
}
}
res[i] = min;
}
return res[n - 1];
}
}
② 在discuss中看到的。跟上面是相同的思路。
class Solution { //19ms
public int nthSuperUglyNumber(int n, int[] primes) {
int[] dp = new int[n];
int[] index = new int[primes.length];
dp[0] = 1;//所有的素数列表都包含该超级丑陋数
for (int i = 1;i < n;i ++){
int min = Integer.MAX_VALUE;
int tmpindex = 0;
for (int j = 0;j < primes.length;j ++){
int cur = dp[index[j]] * primes[j];
if (cur < min){
min = cur;
tmpindex = j;
}else if (cur == min){
index[j] ++;
}
}
index[tmpindex] ++;
dp[i] = min;
}
return dp[n - 1];
}
}