《机器人与数字人:基于MATLAB的建模与控制》——3.2节线速度和角速度

本文摘自《机器人与数字人:基于MATLAB的建模与控制》,介绍了如何计算线速度和角速度。线速度通过对位置向量按时间求导得到,而求解角速度则更为复杂,需要考虑旋转矩阵和坐标系的关系。通过旋转矩阵的时间导数,可以得到坐标系方向变化与传统角速度间的联系。文中还探讨了欧拉角的导数和角速度的关系,以及在不同坐标系下角速度的转换问题。
摘要由CSDN通过智能技术生成

本节书摘来自华章社区《机器人与数字人:基于MATLAB的建模与控制》一书中的第3章,第3.2节线速度和角速度,作者[美]顾友谅(Edward Y.L.Gu),更多章节内容可以访问云栖社区“华章社区”公众号查看

3.2线速度和角速度
为了求得给定的3×1位置向量p∈瘙綆3所表示平移运动的瞬时速度,即通常的刚体运动的线速度,可以简单地对位置向量p按时间求导,即v=。但是在求导之前,需要先完成一些准备工作,必须先把位置向量p投影到一个固定的基础坐标系上,而不能是移动的坐标系上。也就是说,如果pi当前投影到一个非固定坐标系i上,那么必须找到坐标系i相对于基础坐标系的方向矩阵Rib,在计算线速度vb=b之前,需要先求pb=Ribpi。原因很明显,vb=b=ibpi+Ribi≠Ribi,除非Rib是常数矩阵,然而计算很繁琐而且这表明坐标系i是不动的。
相比之下,求解一个坐标系i相对于基础坐标系的角速度ω的过程,比线速度求解过程要复杂得多。因为并没有一个有效的3×1向量来唯一表达坐标系的旋转运动。只有数学中的SO(3)群可以唯一地、稳妥地表示坐标系的方向和旋转运动。一般来说,一个3×1的角速度ω并不完全是某个3×1向量的时间导数。换言之,不存在角位置向量ρ∈瘙綆3,使得ω=,除非旋转运动是绕着一个固定轴进行的,如二维自旋。当使用外微积分时,第一类微分σ=ωdt 是不恰当的,也通常是不闭合的。
为了更好地理解和洞察三维旋转运动和方向的本质,需要寻找角速度ω的传统定义和旋转矩阵R∈S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值