题目描述
有一个容量为 N 的背包,要用这个背包装下物品的价值最大,这些物品有两个属性:体积 w 和价值 v。
解题思路
记忆化搜索
/// 背包问题
/// 记忆化搜索
/// 时间复杂度: O(n * C) 其中n为物品个数; C为背包容积
/// 空间复杂度: O(n * C)
public class Solution {
private int[][] memo;
public int knapsack01(int[] w, int[] v, int C) {
int n = v.length;
memo = new int[n][C + 1];
Arrays.fill(memo, -1);
return bestValue(w, v, n - 1, C);
}
//用 [0..index] 的物品,填充容积为 c 的背包的最大价值
private int bestValue(int[] w, int[] v, int index, int c) {
if (index < 0 || c <= 0) {
return 0;
}
if (memo[index][c] != -1) {
return memo[index][c];
}
// 不考虑index 直接考虑,index - 1的价值
int res = bestValue(w, v, index - 1, c);
if (c >= w[index]) {
res = Math.max(res, v[index] + bestValue(w, v, index - 1, c));
}
memo[index][c] = res;
return res;
}
}
复制代码
动态规划
/// 背包问题
/// 记忆化搜索
/// 时间复杂度: O(n * C) 其中n为物品个数; C为背包容积
/// 空间复杂度: O(n * C)
public class Solution {
public static int knapsack01(int[] w, int[] v, int C) {
if (w == null || v == null || w.length != v.length) {
throw new IllegalArgumentException("Invalid w or v");
}
int n = w.length;
if (n == 0 || C == 0) {
return 0;
}
int[][] memo = new int[n][C + 1];
//先确定最基本的情况
for (int j = 0; j <= C; j++) {
memo[0][j] = (j >= w[0] ? v[0] : 0);
}
for (int i = 0; i < n; i++) {
memo[i][0] = 0;
}
for (int i = 1; i < n; i++) {
for (int j = 0; j <= C; j++) {
//1.物品i不放入背包中,所以c[i][j]为c[i-1][j]的值
memo[i][j] = memo[i - 1][j];
//2.物品i放入背包中,则背包剩余重量为j-w[i],所以c[i][j]为c[i-1][j-w[i]]的值加上当前物品i的价值
if (j >= w[i]) {
memo[i][j] = Math.max(memo[i][j], v[i] + memo[i - 1][j - w[i]]);
}
}
}
return memo[n - 1][C];
}
public static void main(String[] args) {
int m = 10;
int w[] = {3, 4, 5};
int p[] = {4, 5, 6};
int c = knapsack01(w, p, m);
System.out.println(c);
}
}
复制代码
动态规划-优化空间
import java.util.Arrays;
/// 背包问题
/// 记忆化搜索
/// 时间复杂度: O(n * C) 其中n为物品个数; C为背包容积
/// 空间复杂度: O(n * C)
public class Solution {
public static int knapsack01(int[] w, int[] v, int C) {
if (w == null || v == null || w.length != v.length) {
throw new IllegalArgumentException("Invalid w or v");
}
int n = w.length;
if (n == 0 || C == 0) {
return 0;
}
//每次计算新的 memo 时只需用到上一个 memo,因此只需 2 行就行了
int[][] memo = new int[2][C + 1];
//先确定最基本的情况
for (int j = 0; j <= C; j++) {
memo[0][j] = (j >= w[0] ? v[0] : 0);
}
for (int i = 0; i < n; i++) {
memo[i % 2][0] = 0;
}
for (int i = 1; i < n; i++) {
for (int j = 0; j <= C; j++) {
//1.物品i不放入背包中,所以c[i][j]为c[i-1][j]的值
memo[i % 2][j] = memo[(i - 1) % 2][j];
//2.物品i放入背包中,则背包剩余重量为j-w[i],所以c[i][j]为c[i-1][j-w[i]]的值加上当前物品i的价值
if (j >= w[i]) {
memo[i % 2][j] = Math.max(memo[i % 2][j], v[i] + memo[(i - 1) % 2][j - w[i]]);
}
}
}
return memo[(n - 1) % 2][C];
}
public static void main(String[] args) {
int m = 10;
int w[] = {3, 4, 5};
int p[] = {4, 5, 6};
int c = knapsack01(w, p, m);
System.out.println(c);
}
}
复制代码
动态规划-优化空间(一维数组)
/// 背包问题
/// 动态规划改进: 滚动数组
/// 时间复杂度: O(n * C) 其中n为物品个数; C为背包容积
/// 空间复杂度: O(C), 实际使用了2*C的额外空间
public class Solution1 {
public int knapsack01(int[] w, int[] v, int C) {
if (w == null || v == null || w.length != v.length)
throw new IllegalArgumentException("Invalid w or v");
if (C < 0)
throw new IllegalArgumentException("C must be greater or equal to zero.");
int n = w.length;
if (n == 0 || C == 0) {
return 0;
}
int[][] memo = new int[2][C + 1];
for (int j = 0; j <= C; j++) {
memo[0][j] = (j >= w[0] ? v[0] : 0);
}
for (int i = 1; i < n; i++) {
for (int j = 0; j <= C; j++) {
memo[i % 2][j] = memo[(i - 1) % 2][j];
if (j >= w[i])
memo[i % 2][j] = Math.max(memo[i % 2][j], v[i] + memo[(i - 1) % 2][j - w[i]]);
}
}
return memo[(n - 1) % 2][C];
}
public static void main(String[] args) {
}
}
复制代码