动态规划算法——01背包问题

动态规划算法:(规模和规模之间有重合)

能用动态算法解决的问题,都有两个基本的要素
1.最优子结构
2.子问题划分有重叠

解决动态规划算法,主要找出两样东西:
1.“状态”
2.状态转移方程

动态规划算法的应用场景:背包问题
背包问题:有一组物品,其重量分别是:w1,w2,ww3,…wn 其价值分别是:v1,v2,v3,…vn
现在有一个容量为C的背包,问怎么样装入物品,(装入的物品不可重复)才能使背包的价值最大化?
思路分析:
每次遍历到第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中,即对于每个所给定的n个物品,v[i]和w[i]分别为第i个物品的价值和重量,C为背包容量。

package childtree;
/*
  描述:有一组物品,其重量分别是:w1,w2,ww3,...wn
  其价值分别是:v1,v2,v3,....vn
  现在有一个容量为C的背包,问怎么样装入物品,才能使背包的价值最大化?
 */

import java.util.Arrays;

public class childtreepackage {
    static int[] w ={5,8,7,9,6}; //重量
    static int[] v ={12,9,13,10,11};//价值
    static int c =18;  //背包的容量
    static int[] x = new int[w.length]; //子集?
    static int[] bestx = new int[w.length];//存放最优价值选择的物品的子集

    static int bestv = Integer.MIN_VALUE;//物品的最优价值
    static int cw =0;//已选择物品的重量
    static int cv =0;//已选择物品的价值
    static int r =0;//记录当前物品后面剩下的物品的总价值
    private static void backstrace(int i){
        if (i==w.length){
                if (cv>bestv){
                    bestv = cv;//更新最优价值
                    for (int j=0;j<x.length;j++){
                        bestx[j] = x[j];//更新最优价值选择的物品的子集
                    }
                }
        }else {
                r -= v[i];
            if (cw +w[i]<=c) {
                cv += v[i];
                cw += w[i];
                x[i] = 1;

                backstrace(i + 1);//i 节点的左孩子
                cw -= w[i];
                cv -= v[i];
            }

             if (cv +r >bestv) { //r 此时不包含物品i的价值
                 x[i] = 0;
                 backstrace(i + 1);//i节点的右孩子
             }
             r += v[i];//回溯  回退到上一个节点,对上一个节点而言,当前节点的值没有加进来,故需要加v

        }


    }
    public static void main(String[] args) {
        for (int i=0;i<v.length;i++){
            r = bestv-w[i];
        }
        backstrace(0);
        System.out.println("bestv:" + bestv);
        System.out.println(Arrays.toString(bestx));

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值