动态规划算法:(规模和规模之间有重合)
能用动态算法解决的问题,都有两个基本的要素:
1.最优子结构
2.子问题划分有重叠
解决动态规划算法,主要找出两样东西:
1.“状态”
2.状态转移方程
动态规划算法的应用场景:背包问题
背包问题:有一组物品,其重量分别是:w1,w2,ww3,…wn 其价值分别是:v1,v2,v3,…vn
现在有一个容量为C的背包,问怎么样装入物品,(装入的物品不可重复)才能使背包的价值最大化?
思路分析:
每次遍历到第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中,即对于每个所给定的n个物品,v[i]和w[i]分别为第i个物品的价值和重量,C为背包容量。
package childtree;
/*
描述:有一组物品,其重量分别是:w1,w2,ww3,...wn
其价值分别是:v1,v2,v3,....vn
现在有一个容量为C的背包,问怎么样装入物品,才能使背包的价值最大化?
*/
import java.util.Arrays;
public class childtreepackage {
static int[] w ={5,8,7,9,6}; //重量
static int[] v ={12,9,13,10,11};//价值
static int c =18; //背包的容量
static int[] x = new int[w.length]; //子集?
static int[] bestx = new int[w.length];//存放最优价值选择的物品的子集
static int bestv = Integer.MIN_VALUE;//物品的最优价值
static int cw =0;//已选择物品的重量
static int cv =0;//已选择物品的价值
static int r =0;//记录当前物品后面剩下的物品的总价值
private static void backstrace(int i){
if (i==w.length){
if (cv>bestv){
bestv = cv;//更新最优价值
for (int j=0;j<x.length;j++){
bestx[j] = x[j];//更新最优价值选择的物品的子集
}
}
}else {
r -= v[i];
if (cw +w[i]<=c) {
cv += v[i];
cw += w[i];
x[i] = 1;
backstrace(i + 1);//i 节点的左孩子
cw -= w[i];
cv -= v[i];
}
if (cv +r >bestv) { //r 此时不包含物品i的价值
x[i] = 0;
backstrace(i + 1);//i节点的右孩子
}
r += v[i];//回溯 回退到上一个节点,对上一个节点而言,当前节点的值没有加进来,故需要加v
}
}
public static void main(String[] args) {
for (int i=0;i<v.length;i++){
r = bestv-w[i];
}
backstrace(0);
System.out.println("bestv:" + bestv);
System.out.println(Arrays.toString(bestx));
}
}