多输入通道
多输出通道:
设卷积核输入通道,输出通道是 ci , co,高宽为 kh , kw
为每个输出通道分别建立 ci * kh * kw 的核数组。在输出通道维上连结,卷积核的形状即为co * ci *kh*kw
from mxnet import autograd,nd from mxnet import gluon,init from mxnet.gluon import nn,loss as gloss from mxnet.gluon import data as gdata # 二维卷积层 def corr2d(X,K): h, w = K.shape Y = nd.zeros((X.shape[0] - h + 1,X.shape[1] - w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i,j] = (X[i: i+h,j:j+w]*K).sum() return Y # 多通道输入 def corr2d_multi_in(X,K): return nd.add_n(*[corr2d(x,k) for x,k in zip(X,K)]) X = nd.array([[[0,1,2],[3,4,5],[6,7,8]], [[1,2,3],[4,5,6],[7,8,9]]]) print(X) K = nd.array([[[0,1],[2,3]],[[1,2],[3,4]]]) print(corr2d_multi_in(X,K)) # 多通道输出 # 为每个输出通道分别创建 ci * kh * kw 的核数组 # 将他们在输出通道维上连结,卷积核的形状即为 co * ci * kh * kw 的核数组 def corr2d_multi_in_out(X,K): return nd.stack(*[corr2d_multi_in(X,k) for k in K]) # 3 通道核 3 * 2 * 2 * 2 K = nd.stack(K,K+1,K+2) print(K) print(corr2d_multi_in_out(X,K))