1.理论
1.1 多输入通道
每个通道都有一个卷积核,结果是所有通道卷积结果的和
1.2 多输出通道
1.3 多通道的意义
每个输出通道可以识别特定模式,当把这些特定模式作为下一层的输入通道时,就可以将这些模式组合起来,(一开始识别局部的纹理信息之类的,通过组合这些,最终学习到高级的语义信息。)
1.4 1*1卷积层
这里,11卷积层不识别空间信息,只是融合通道,相当于NhNw个Ci的输入向量,输出为C0,权重为C0Ci,
强调:一个向量为Ci,只是有NhNw个向量。输出也是C0,只是有Nh*Nw个。
1.4 二维卷积层
12TF表示的是12TFlops/s(每秒12T浮点数运算)
1.5总结
代码
zip会把0维度的东西拿出来遍历的
import torch
from d2l import torch as d2l
def corr2d_multi_in(X, K):
# 先遍历 “X” 和 “K” 的第0个维度(通道维度),再把它们加在一起
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
多输出t通道
def corr2d_multi_in_out(X, K):
# 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。
# 最后将所有结果都叠加在一起
return torch.stack([corr2d_multi_in(X, k) for k in K], 0)
K = torch.stack((K, K + 1, K + 2), 0)
K.shape
corr2d_multi_in_out(X, K)
【重点】torch.stack((K, K + 1, K + 2), 0),torch.stack(,0)会多出一个维度来的。
11卷积层:用全连接层模拟
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
# 全连接层中的矩阵乘法
Y = torch.matmul(K, X)
return Y.reshape((c_o, h, w))
X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6
QA
- 卷积的bias作用越来越小,可以加也可以不加
- 卷积能够获取到位置信息,就是根据它的卷积核来确定的。
- feature map就是你的卷积的输出,一般是高和宽,有时会算上通道数