OCR 识别原理

https://mp.weixin.qq.com/s?__biz=MzA3MDExNzcyNA==&mid=402907292&idx=1&sn=889c4abcf576e24525ea6a705069c4de

https://blog.csdn.net/zgwangbo/article/details/51137957

写得非常简洁清晰。

### OCR字符识别工作原理详解 #### 一、图像预处理阶段 在OCR过程中,图像预处理是一个至关重要的环节。该过程旨在改善输入图像的质量,以便后续的文字识别能够更加精确。常见的预处理步骤包括灰度化、二值化以及噪声去除等操作[^1]。 ```python import cv2 import numpy as np def preprocess_image(image_path): img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) # 灰度读取图片 _, binary_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 自适应阈值二值化 kernel = np.ones((3, 3), np.uint8) denoised_img = cv2.morphologyEx(binary_img, cv2.MORPH_OPEN, kernel) # 去噪处理 return denoised_img ``` #### 二、文本区域定位(Text Detection) 为了准确提取文档中的文字部分,需要通过特定算法来划定可能含有文字的矩形框。这一步骤对于复杂布局尤其重要,可以采用基于边缘检测的方法或是利用深度学习模型直接预测文本行的位置[^2]。 #### 三、单个字符分割与特征提取 当明确了各个独立单词甚至单独字母所在位置之后,则需进一步将其切分成最小单位即单个字符,并从中抽取有助于分类器判断的关键属性。传统方式会计算几何形状参数;而现代方案则倾向于借助卷积层自动捕捉局部模式[^3]。 #### 四、字符识别 最终进入核心环节——字符识别本身。早期依靠模板匹配完成这项任务,但随着机器学习尤其是深度学习的发展,如今更多的是训练专门设计好的人工神经网络来进行高效且鲁棒性强得多的映射关系建模。例如CTC (Connectionist Temporal Classification)损失函数配合LSTM(Long Short-Term Memory)单元组成的架构被广泛应用于连续手写或印刷体序列上的应用案例之中。 #### 五、后处理及输出结果整理 经过上述流程得到初步的结果后,还需经历一系列校正措施确保最终呈现给用户的答案尽可能贴近真实情况。比如纠正拼写错误、调整大小写字母比例等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值