数值优化-梯度下降法

NG的课件1,引出常用的优化方法梯度下降法(gradient descent)

   

对于 ordinary least squares regression, cost function为

求最小值,意味着求导数为0的位置

   

考虑只有一个样本

   

这叫做LMS update rule (Least Mean Squares)

   

对应所有样本的训练集合

   

这种方法叫做batch gradient decent ,与之对应的在样本数目比如海量的情况下,为了计算快速,经常会每

扫描一个点就做一次update而不是扫描所有点后做一次update,对应称作stochastic gradient decent

   

逻辑回归中:

对应按照MLE观点看,最大化概率

   

   

   

   

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
梯度下降法是一种常用的优化算法,用于求解函数的极小值。在Python中,可以使用NumPy库来实现梯度下降法。 以下是使用梯度下降法求函数极小值的步骤: 1. 定义目标函数:首先,需要定义一个目标函数,即要求解极小值的函数。例如,我们可以定义一个简单的二次函数作为目标函数:f(x) = x^2。 2. 初始化参数:选择一个初始点作为起始点,并初始化学习率和迭代次数。学习率决定了每次迭代更新参数的步长,迭代次数决定了算法的收敛性。 3. 计算梯度:计算目标函数在当前参数点处的梯度。梯度表示了函数在该点处的变化率和方向。 4. 更新参数:根据梯度和学习率,更新参数的数值。更新规则为:参数 = 参数 - 学习率 * 梯度。 5. 迭代更新:重复步骤3和步骤4,直到达到指定的迭代次数或满足停止条件(例如梯度接近于零)。 下面是一个使用梯度下降法求解目标函数极小值的Python代码示例: ```python import numpy as np # 定义目标函数 def target_function(x): return x**2 # 梯度下降法求解极小值 def gradient_descent(learning_rate, num_iterations): # 初始化参数 x = 0 # 迭代更新 for i in range(num_iterations): # 计算梯度 gradient = 2 * x # 更新参数 x = x - learning_rate * gradient return x # 设置学习率和迭代次数 learning_rate = 0.1 num_iterations = 100 # 调用梯度下降法函数 result = gradient_descent(learning_rate, num_iterations) print("极小值点:", result) print("极小值:", target_function(result)) ``` 运行以上代码,将得到目标函数的极小值点和极小值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值