复杂的人工智能如何用大数据来创造之说

文章讲的是 复杂的人工智能如何用大数据来创造之说不当电脑根据程序编写的明确要求遵循系列指令,比如IBM在1954年发展的将俄语翻译为英语的程序,人可以轻易理解为什么软件会用一个词代替另一个词。但谷歌翻译在判断英语单词“light”是该翻译成法语的“lumière”还是“léger”时(即描述“光”还是“重量”),却动用了数十亿页的翻译资料。

  一个电脑系统的运行是因为它是在根据编写程序时,就被明确要求它们遵循的规则来进行运算。就算是遇到一些不可避免的错误,我们也大可回去查看,看看电脑是如何得出这个结果的。虽然电脑代码可以被打开检查,人们可以追踪并理解运算的基础,无论这个基础如何复杂。但有了大数据分析之后,这种追踪就会变得困难许多。算法预言的基础可能会复杂得让常人难以理解。

  大数据的“不可解释”性

  当电脑根据程序编写的明确要求遵循系列指令,比如IBM在1954年发展的将俄语翻译为英语的程序,人可以轻易理解为什么软件会用一个词代替另一个词。但谷歌翻译在判断英语单词“light”是该翻译成法语的“lumière”还是“léger”时(即描述“光”还是“重量”),却动用了数十亿页的翻译资料。一个人不可能追踪到程序作出最后选择的准确原因,因为这些选择是基于海量的数据和大量的统计运算的。

  大数据运作的规模也超乎我们的想象。比如,谷歌分辨几个搜寻关键词和流感的关联是测试4.5亿个数学模型的结果。相对地,麻省理工学院统计学助理教授辛西娅?鲁丁(CynthiaRudin),为检修孔是否会着火设计了106个预测指标,而且她可以向联合爱迪生电力公司的经理们解释,为什么她的程序优先了某些检查位置。

  人工智能界所说的“可解释性”,对于我们常人来说是很重要的,我们总是想知其所以然,而不仅是知其然。可是,如果系统自动生成了601个预报,而不是106个呢?如果这601个中大多数都不是特别重要,但把它们放在一起,就会提升模型的精确性?任何预报的基础都可能非常复杂。要说服经理们重新分配有限的预算,她该告诉他们什么呢?

  在这个情景中,我们可以看到,大数据预报的风险,及其背后的算法和数据集,可以变成不可说明、不可追踪,甚至不可信的黑匣子。要防止这样的事情发生,大数据需要监控和透明,这就要求新的专业知识和机构。这些新成员会帮助社会仔细检查某些领域的大数据预报,会让被数据伤害的人得到平反。

  大数据会需要新的一群人来担当这个角色。也许他们会被称为“算法师”。他们可能分两类——从外部监测公司的独立实体,或从内部监测公司的雇员或部门——就像公司有内部会计师和外来审计师来检查财务一样。

  这些专业人士会是计算机科学、数学和统计学方面的专家;他们会检查大数据的分析和预报。算法师必须中立并保密,就像会计师和其他一些职业现在所做的那样。他们会评价数据源的选择,分析和预报工具的选择,包括算法和模型,以及对结果的阐释。在有争议时,他们会获取得出某个结果的算法、统计方法和数据集。


作者:白孟洁 

来源:IT168

原文链接:复杂的人工智能如何用大数据来创造之说

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值