Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练

在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要。后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础。

HOG算法的原理很多资料都可以查到,简单来说,就是将图像分成一个cell,通过对每个cell的像素进行梯度处理,进而根据梯度方向和梯度幅度来得到cell的图像特征。随后,将每个cell的图像特征连接起来,得到一个BLock的特征,进而得到一张图片的特征。Opencv当中自带HOG算法,可以直接调用,进行图像的特征提取。但是作为一个初学者,自然应该自己手写一下HOG算法,这样能够更加透彻地去理解。

下面是我自己写的HOG,代码比较粗糙,为了适应下面的KNN分类器,HOG算法的接口设计为输入一张图片,返回一个vector向量。

class HOG{
private:
    Mat img;
public:
    vector<float>bins;                                //返回一个图片的HOG特征;
    void GetImage(Mat src);
    void Cut_to_Block();                               //将图片分割成一个个Block;
    void Cut_to_Cell(int pixel_x, int pixel_y);        //将图片分割成一个个Cell;
    void Cell_to_bin(int x, int y);                    //对每个Cell进行处理,得到每个Cell的bins;
};

void HOG::GetImage(Mat src){
    bins.clear();
    cvtColor(src, img, COLOR_RGB2GRAY);
    Cut_to_Block();
}

void HOG::Cut_to_Block(){
    for (int i = 1; i <= img.rows - 17; i = i + 8){
        for (int j = 1; j <= img.cols - 17; j = j + 8){
            Cut_to_Cell(i, j);
        }
    }
}

void HOG::Cut_to_Cell(int pixel_x, int pixel_y){
    for (int i = pixel_x, m = 0; m < 2; i = i + 8, m++){
        for (int j = pixel_y, n = 0; n < 2; j = j + 8, n++){
            Cell_to_bin(i, j);
        }
    }
}

void HOG::Cell_to_bin(int x, int y){
    int pixel_x;                  //cell的像素的起始位置行坐标;
    int pixel_y;                  //cell的像素的起始位置纵坐标;
    float pixel[10][10];         //我们一般默认cell为8*8的像素大小,但是为了储存周边店的像素,需要多加两个像素储存点的位置;
    float gradient_M[9][9];            //保存梯度的幅值;
    float gradient_Angle[9][9];        //保存像素梯度的方向;
    float gradient_h[9][9];
    float gradient_v[9][9];
    float bin[9];                    //存放一个Cell当中的bins值;

    pixel_x = x;
    pixel_y = y;

    //为了计算方便,我们将每个Cell的像素先提取出来,存放在pixel[][]当中;
    for (int i = pixel_x - 1, m = 0; i < pixel_x + 9; i++, m++){
        uchar *data = img.ptr<uchar>(i);
        for (int j = pixel_y - 1, n = 0; j < pixel_y + 9; j++, n++){
            pixel[m][n] = data[j];
        }
    }

    //计算每个像素的梯度幅值和梯度角度;
    for (int i = 1; i<9; i++){
        for (int j = 1; j<9; j++){
            gradient_h[i][j] = pixel[i + 1][j] - pixel[i - 1][j];
            gradient_v[i][j] = pixel[i][j + 1] - pixel[i][j - 1];
            gradient_M[i][j] = sqrt(gradient_h[i][j] * gradient_h[i][j] + gradient_v[i][j] * gradient_v[i][j]);
            gradient_Angle[i][j] = atan2(gradient_h[i][j], gradient_v[i][j]) * 180;
        }
    }

    //根据每个像素的幅值进行维度的区分分类;
    for (int i = 0; i<9; i++){
        bin[i] = 0;
    }

    for (int i = 1; i<9; i++){
        for (int j = 1; j<9; j++){
            if ((gradient_Angle[i][j] >= 0 && gradient_Angle[i][j]<20) || (gradient_Angle[i][j] >= 180 && gradient_Angle[i][j]<200)){
                bin[0] = bin[0] + gradient_M[i][j];
            }
            if ((gradient_Angle[i][j] >= 20 && gradient_Angle[i][j]<40) || (gradient_Angle[i][j] >= 200 && gradient_Angle[i][j]<220)){
                bin[1] = bin[1] + gradient_M[i][j];
            }
            if ((gradient_Angle[i][j] >= 40 && gradient_Angle[i][j]<60) || (gradient_Angle[i][j] >= 220 && gradient_Angle[i][j]<240)){
                bin[2] = bin[2] + gradient_M[i][j];
            }
            if ((gradient_Angle[i][j] >= 60 && gradient_Angle[i][j]<80) || (gradient_Angle[i][j] >= 240 && gradient_Angle[i][j]<260)){
                bin[3] = bin[3] + gradient_M[i][j];
            }
            if ((gradient_Angle[i][j] >= 80 && gradient_Angle[i][j]<100) || (gradient_Angle[i][j] >= 260 && gradient_Angle[i][j]<280)){
                bin[4] = bin[4] + gradient_M[i][j];
            }
            if ((gradient_Angle[i][j] >= 100 && gradient_Angle[i][j]<120) || (gradient_Angle[i][j] >= 280 && gradient_Angle[i][j]<300)){
                bin[5] = bin[5] + gradient_M[i][j];
            }
            if ((gradient_Angle[i][j] >= 120 && gradient_Angle[i][j]<140) || (gradient_Angle[i][j] >= 300 && gradient_Angle[i][j]<320)){
                bin[6] = bin[6] + gradient_M[i][j];
            }
            if ((gradient_Angle[i][j] >= 140 && gradient_Angle[i][j]<160) || (gradient_Angle[i][j] >= 320 && gradient_Angle[i][j]<340)){
                bin[7] = bin[7] + gradient_M[i][j];
            }
            if ((gradient_Angle[i][j] >= 160 && gradient_Angle[i][j] <= 180) || (gradient_Angle[i][j] >= 340 && gradient_Angle[i][j] <= 360)){
                bin[8] = bin[8] + gradient_M[i][j];
            }
        }
    }

    //归一化;
    float sum_bin = 0;
    for (int i = 0; i<9; i++){
        sum_bin = sum_bin + bin[i];
    }
    for (int i = 0; i<9; i++){
        bin[i] = bin[i] / sum_bin;
        if (bin[i]>0.2){
            bin[i] = 0.2;
        }
    }
    sum_bin = 0;
    for (int i = 0; i<9; i++){
        sum_bin = sum_bin + bin[i];
    }
    for (int i = 0; i<9; i++){
        bin[i] = bin[i] / sum_bin;
    }

    //返回bin[]的值到bins向量当中;
    for (int i = 0; i < 9; i++){
        bins.push_back(bin[i]);
    }
}

写完了HOG算法,下面就开始写KNN 分类器了。KNN算法很容易理解,就是在一个元素周围选取最邻近的K个元素,然后分析这k个元素当中,哪一类占的比例最大,那么这个元素就属于该类。

同样Opencv当中也有KNN算法,为类CvKNearest(),直接调用便可以进行训练,具体地可以查阅相关文档。

class KNN{
private:
    vector < vector < float >> datatrain;
    vector<int> dataclass;
    CvKNearest *knn;
public:
    KNN();
    //对从HOG算法传递出来的数据进行整合处理,src表示一张图的HOG特征数组,classfile表示这张图所代表的分类;
    void Data_integration(vector<float> src, int classfile);
    void KNN_Train();                      //将HOG得到的数据进行相关处理,然后进行KNN训练;
    int KNN_Test(vector<float> src);      //将KNN训练好之后,传入一个HOG特征值,返回一个分类;
};

KNN::KNN(){
    knn=new CvKNearest();
}

void KNN::Data_integration(vector<float> src, int classfile){
    datatrain.push_back(src);
    dataclass.push_back(classfile);
}

void KNN::KNN_Train(){
    CvMat *DataTrain=cvCreateMat(390,900,CV_32FC1);
    CvMat *DataClass=cvCreateMat(390,1,CV_32FC1);
    for(int i=0;i<390;i++){
        cvmSet(DataClass,i,0,dataclass[i]);
        for(int j=0;j<900;j++){
            cvmSet(DataTrain,i,j,datatrain[i][j]);
        }
    }
    knn->train(DataTrain,DataClass,0,false,30,false);
}

int KNN::KNN_Test(vector<float> src){
    CvMat *DataSample = cvCreateMat(1, 900, CV_32FC1);
    for (int i = 0; i < 900; i++){
        cvmSet(DataSample,0,i,src[i]);
    }
    int k;
    k = (int)knn->find_nearest(DataSample, 30);
    return k;
}

有个HOG 和 KNN,那现在就可以进行训练了。我有了13类车牌图片进行训练,每类30张。

在这里,有一个东西要注意一下,那就是批量读取图片。我采用了一个很笨的方法,那就是把每张图片的地址存在一个txt文档当中,然后先读取地址,然后在读取图片。这样的方法,在图片数量较少的情况下可以使用的,但是图片数量成千上百张,就很麻烦了。

int main(){
    HOG Hog;
    KNN Knn;
    string Imageadress[390];
    ifstream fin("train.txt");           //图片地址事先保存在train.txt文件当中;
    for (int i = 0; i<390; i++){
        getline(fin, Imageadress[i]);    //从文件当中一行一行读出地址,保存到Imgaeadree当中;
    }

    Mat Image[390];
    for (int i = 0; i < 390; i++){
        Image[i] = imread(Imageadress[i], 1);   //读入图片文件;
    }

    for (int i = 0; i < 390; i++){
        int k = 0;
        k = i / 30;             //通过整除30,来获得该图片属于哪个分类当中的;
        Hog.GetImage(Image[i]);
        Knn.Data_integration(Hog.bins, k);
    }
    Knn.KNN_Train();

    //进行检测;
    ifstream testin("test4.txt");
    string testImageadress[70];
    Mat testimg[70];
    for(int i=0;i<70;i++)
    {
        getline(testin,testImageadress[i]);
    }

    for(int i=0;i<70;i++){
        testimg[i]=imread(testImageadress[i],1);
    }

    int count=0;
    for(int i=0;i<70;i++){
        int k;
        Hog.GetImage(testimg[i]);
        k=Knn.KNN_Test(Hog.bins);
        cout<<k<<endl;
        if(k!=3){
            count++;
        }
    }
    cout<<"错误的数量:"<<count<<endl;
}

训练完毕之后,我又使用13类图片,每类70张,进行检测分类。

很不幸,识别结果不是很理想,奔驰等简单的车牌识别率很高,可以达到百分之百,但是复杂的车牌识别率就瞬间下来了,当中的原因,是因为HOG算法写得有问题啊,不够好,需要改进。

转载于:https://www.cnblogs.com/code-wangjun/p/5898188.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值