回转半径的计算公式_截面最小回转半径怎么算,比如300*400的柱子

回转半径是物体转动惯量与质量的几何特性,它描述了物体绕轴转动时的特性。计算公式为回转半径等于转动惯量除以质量的平方根。例如,300*400柱子的最小回转半径为150√3。回转半径与截面形状和尺寸有关,对于非对称截面,常取最小回转半径用于长细比计算。在结构工程中,回转半径对于判断构件稳定性至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开全部

回转半径是指物体微分质量假设的集中点到32313133353236313431303231363533e4b893e5b19e31333431353937转动轴间的距离,它的大小等于转动惯量除总质量后再开平方。

比如300*400的柱子:

I=bh^3/12=400*300^3/12

A=400*300

最小回转半径=根号下(I/A)=150√3

扩展资料:

物体对于一个直轴的回转半径,是与对于此直轴的转动惯量和物体的质量有关。

物理上认为,刚体按一定规律分布的质量,在转动中等效于集中在某一点上的一个质点的质量,假设此点离某轴线的垂距为k,刚体对该轴线的转动惯量与该等效质点对此同一轴线的转动惯量相等,即I=mk^2,则k称为该刚体对该轴线的回转半径。

回转半径的大小与截面的形心轴有关。最小回转半径一般指非对称截面中(如不等边角钢),对两个形心轴的回转半径中的较小者。这在计算构件的长细比时,如构件的平面内和平面外计算长度相等时,它的长细比就要用最小回转半径计算。

结论

1、回转半径仅与截面所在垂直于计算轴的轴的高度有关,也就是仅与截面在垂直于计算轴的方向上的展开程度有关,

2、回转半径与构成截面的板件的厚度和宽度几乎没有什么关系。

3、长方形截面为0.3,中间加一块板变为0.2,比原来降低0.1,是因为惯性矩没有什么变化,但是面积有较大的增加,将中间板移到端部,则变成是0.3,比原来升高0.1,是因为惯性矩有较大的增加,将T形截面的另一端再加上一块板件,则变成0.4,又在原来的基础上升高0.1,这只是一个近似的规律,并且有一定的实用条件,但是对于通常所见的截面一般都能满足以上规律。

物体对于一支直轴的回转半径,是与对于此直轴的转动惯量和物体的质量有关。

<think>好的,我现在要解释什么是球形回转半径。首先,我需要确认自己对这个概念的理解是否正确。球形回转半径,可能和物体的转动惯量有关吧?回转半径通常是指一个物体在旋转时,其质量分布相对于旋转轴的等效距离。而球形回转半径可能特指球体的回转半径? 接下来,我需要回忆一下物理学中关于转动惯量的知识。转动惯量是物体在旋转运动中惯性大小的量度,计算公式为I = mr²,其中m是质量,r是回转半径。对于实心球体,转动惯量是(2/5)mr²,而回转半径应该可以通过这个公式反推出来。比如,实心球的回转半径应该是sqrt(I/m) = sqrt((2/5)mr² / m) = sqrt(2/5)r,也就是√(2/5)倍的半径。但这里可能需要确认是否正确,或者是否还有其他情况,比如空心球体? 不过用户提到的“球形回转半径”可能更广泛,不单指实心球体。那么回转半径的一般定义是将物体的质量分布等效为一个环,环的半径就是回转半径,这样转动惯量等于整个物体绕轴的转动惯量。因此,无论是实心还是空心的球体,回转半径都可以用类似的方法计。 需要区分实心和空心的不同情况。比如,实心球体的转动惯量是(2/5)mr²,而空心薄球壳的转动惯量是(2/3)mr²。因此它们的回转半径分别是sqrt(2/5)r和sqrt(2/3)r。但用户的问题可能更关注一般性的定义,而不是具体形状的计。 另外,回转半径在工程和材料科学中也有应用,比如在结构分析中,用来衡量截面绕某轴的惯性特性,可能与截面形状有关。但这里用户问的是“球形回转半径”,所以可能更偏向物理中的概念,即球体的回转半径。 需要确认术语的正确性,是否确实有“球形回转半径”这一说法,还是用户可能混淆了术语。比如,回转半径本身并不特定于球形,而是一个普遍概念,但可能针对球体的情况,计回转半径。 总结来说,回转半径是将物体的质量分布简化为一个质点,该质点绕旋转轴的转动惯量与原物体相同,此时质点到轴的距离就是回转半径。对于球体,无论是实心还是空心,都有对应的回转半径,根据转动惯量公式推导即可。 可能的步骤是: 1. 定义回转半径的一般概念。 2. 解释球形回转半径,即球体的回转半径。 3. 分别讨论实心球体和空心球壳的回转半径。 4. 给出数学表达式,如使用转动惯量公式推导。 5. 说明其应用或意义。 需要确保公式的正确性,例如实心球的转动惯量是否确实是(2/5)mr²,而回转半径R_g = sqrt(I/m) = sqrt(2/5)r。同样,空心球壳的R_g = sqrt(2/3)r。 可能还需要指出,回转半径有时也称为“回转半径”或“回转半径”,取决于翻译,但关键是要明确其物理意义。</think>球形回转半径是描述物体质量分布对旋转运动影响的等效半径,具体解释如下: --- ### 1. **基本定义** **回转半径**(Radius of Gyration)是将物体的质量分布简化为一个质点,使该质点绕旋转轴的转动惯量与原物体相同,此时质点到轴的距离即为回转半径。对于球形物体,这一半径称为**球形回转半径**。 --- ### 2. **物理意义** - 反映物体质量分布的集中程度:回转半径越小,质量越靠近旋转轴;反之,质量分布越分散。 - 在工程和材料科学中常用于分析结构的抗弯或抗扭性能。 --- ### 3. **球体的回转半径** #### (1)**实心球体** - **转动惯量公式**:$$I = \frac{2}{5} m r^2$$ 其中,\(m\) 为质量,\(r\) 为球体实际半径。 - **回转半径** \(R_g\): $$R_g = \sqrt{\frac{I}{m}} = \sqrt{\frac{2}{5} r^2} = r \sqrt{\frac{2}{5}}$$ #### (2)**空心薄球壳** - **转动惯量公式**:$$I = \frac{2}{3} m r^2$$ - **回转半径** \(R_g\): $$R_g = \sqrt{\frac{2}{3} r^2} = r \sqrt{\frac{2}{3}}$$ --- ### 4. **应用场景** - **机械设计**:优化旋转部件的质量分布(如飞轮、齿轮)。 - **材料力学**:分析梁或柱的截面惯性特性。 - **分子物理学**:描述高分子链的尺寸(如蛋白质分子的回转半径)。 --- ### 5. **公式对比总结** | 球体类型 | 转动惯量 | 回转半径 \(R_g\) | |------------|------------------|------------------------| | 实心球体 | \(\frac{2}{5}mr^2\) | \(r \sqrt{\frac{2}{5}}\) | | 空心薄球壳 | \(\frac{2}{3}mr^2\) | \(r \sqrt{\frac{2}{3}}\) | --- 通过回转半径,可以更直观地理解复杂质量分布的旋转特性,而球形回转半径则是针对球体这一对称形状的特例分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值