棋盘问题
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 70224 Accepted: 33254
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
Source
蔡错@pku
------------------------------------------------------------------------------------------------------------------------------------------------------
本题为一道典型的深搜的模板题
但刚开始见到的时候往往会找不到地方下手
博主的思路就是按照行进行深搜
然后标记给列
这样就能保证不重复地遍历所有元素
当然只有map上面是#的才能放咯
下面上我注释仔细
谁都看的懂的代码
------------------------------------------------------------------------------------------------------------------------------------------------------
1 //Author:LanceYu 2 #include<iostream> 3 #include<string> 4 #include<cstring> 5 #include<cstdio> 6 #include<fstream> 7 #include<iosfwd> 8 #include<sstream> 9 #include<fstream> 10 #include<cwchar> 11 #include<iomanip> 12 #include<ostream> 13 #include<vector> 14 #include<cstdlib> 15 #include<queue> 16 #include<set> 17 #include<ctime> 18 #include<algorithm> 19 #include<complex> 20 #include<cmath> 21 #include<valarray> 22 #include<bitset> 23 #include<iterator> 24 #define ll long long 25 using namespace std; 26 const double clf=1e-8; 27 //const double e=2.718281828; 28 const double PI=3.141592653589793; 29 const int MMAX=2147483647; 30 //priority_queue<int>p; 31 //priority_queue<int,vector<int>,greater<int> >pq; 32 char map[9][9]; 33 int vis[9]; 34 int n,m,sum,num; 35 void dfs(int x)//按照行数搜索 36 { 37 if(m==num)//如果做到了放入n个棋子,方案总数+1 38 { 39 sum++; 40 return; 41 } 42 if(x>n-1)//不能越界 43 return; 44 for(int j=0;j<n;j++) 45 { 46 if(!vis[j] && map[x][j]=='#')//如果这一层能放,就直接放进去,计数器+1 47 { 48 vis[j]=1;//纵轴标记,不能再次访问 49 num++; 50 dfs(x+1); 51 num--; 52 vis[j]=0; 53 } 54 } 55 dfs(x+1); //如果这一行没有,就直接进入下一行,继续搜索 56 } 57 int main() 58 { 59 while(scanf("%d%d",&n,&m)!=EOF) 60 { 61 if(n==-1&&m==-1) 62 return 0; 63 sum=0;num=0; 64 for(int i=0;i<n;i++) 65 scanf("%s",map[i]); 66 memset(vis,0,sizeof(vis)); 67 dfs(0); 68 printf("%d\n",sum); 69 } 70 71 return 0; 72 }
------------------------------------------------------------------------------------------------------------------------------------------------------
Notes:主要是了解DFS算法的本质
略微修改下模板即可AC
2018-11-20 01:46:50 Author:LanceYu