洛谷——P4018 Roy&October之取石子

P4018 Roy&October之取石子

题目背景

Roy和October两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自然数,且p^kpk小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在October先取,问她有没有必胜策略。

若她有必胜策略,输出一行"October wins!";否则输出一行"Roy wins!"。

输入输出格式

输入格式:

 

第一行一个正整数T,表示测试点组数。

第2行~第(T+1)行,一行一个正整数n,表示石子个数。

 

输出格式:

 

T行,每行分别为"October wins!"或"Roy wins!"。

 

输入输出样例

输入样例#1:  复制
3
4
9
14
输出样例#1:  复制
October wins!
October wins!
October wins!

说明

对于30%的数据,1<=n<=30;

对于60%的数据,1<=n<=1,000,000;

对于100%的数据,1<=n<=50,000,000,1<=T<=100,000。

(改编题)

 

乍一看像是博弈

其实数学归纳法也可以完成这个题目

我们来看下面的表格

棋子的个数123456789
第一个人取得个数1^12^13^12^25^12^21^1+2^12^1+2^13^1+2^1
第二个人取得个数000002^12^22^22^2

当棋子的个数小于等于6的时候,我们可以看到在1~5的时候全是第一个人赢,当n=6是第二个人赢,当7~11内我们可以将数拆成1~5内的一个数想让第一个人拿,然后余出个6,这样第二个人就不可能一次拿完,只能再让第一个人拿一次,这样第一个人必胜,当12时,第二个人赢、、、以此类推,我们可以发现,当n为6的倍数的时候,第二个人赢,其余情况均为第一个人赢

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int T,n;
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int main()
{
    T=read();
    while(T--)
    {
        n=read();
        if(n%6==0) printf("Roy wins!\n");
        else printf("October wins!\n");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/z360/p/8156806.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值