导数中的恒成立问题(不含参)

例题

1.证明:\(x\text{ e}^x-\ln x-x-1\geqslant 0\)

2.证明:\((\text{ e}^x-1)\ln(x+1)\geqslant x^2\)

3.证明:\((x-2)\text{ e}^x+4+x\ln x>0\)

4.证明:\(\frac{x^2-4x+3}{\text{ e}^2}\cdot\text{ e}^x+x\ln x-x+2>0\)

练习

\(1.\)已知\(t\)是函数\(f(x)=x^2\text{ e}^x+\ln x\)的零点,

\(f(2t)\)的值所在的区间为

\(\text{ A}.\hspace{0.1cm} (\text{ e}\)\(3)\hspace{0.8cm}\text{ B}.\hspace{0.1cm}(3\)\(4)\)

\(\text{ C}.\hspace{0.1cm}(4\)\(5)\hspace{0.9cm}\text{ D}.\hspace{0.1cm}(5\)\(6)\)

\(2.\)解不等式:\(\text{ e}^x<\frac{\text{ e}x^2}{1+\ln x}\)

\(3.\)证明:当\(x\)\(>\)\(-1\)时,

\((x-1)\text{ e}^x\geqslant \text{ e}^x\ln(x+1)-x-1.\)

\(4.\)设实数\(\lambda>0\),若对任意的\(x\in (\text{ e}^2\)\(+\infty)\)

关于\(x\)的不等式\(\lambda\text{e}^{\lambda x}-\ln x \geqslant 0\) 恒成立,

\(\lambda\)的最小值\(.\)

\(5.\)已知\(f(x)=\text{ e}^x\)

求证:当\(x>0\)时,\(f(x)>4\ln x+8-8\ln 2.\)

转载于:https://www.cnblogs.com/xuebajunlutiji/p/10897927.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值