matlab中欠定方程组超定方程组_深度科普---电磁波(一):真空中的Maxwell方程组...

很久没有写过与自己专业相关的文章了,于是计划穿插进几篇有关电磁波的深度科普的文章。计划分为几个部分:
1. 真空中的
方程组(本文章)

2. 介质中的
方程组和电磁场的边值条件

3. 无激励下的真空中的
方程组的解---电磁波

4. 稳定状态下的边值条件及其结论
相信大家看完这个系列的文章之后会对电磁波有一定的认识。

首先,我们给出真空中的

方程组的微分形式:

按照惯例,我要对这其中的每一个方程进行解释:

1.

第一方程---电
公式

表达式

微分形式:

积分形式:

物理意义穿过任意闭合曲面的电通量正比于该闭合曲面包围的电荷量,说明电场是有源场。


我们由微分形式来推导一下积分形式

引理:
散度定理:
散度定理的数学意义:任意矢量场
的散度的体积积分(三重积分)等于该矢量场在任一个包围该体积的闭合曲面上的曲面积分。

则:

最终有:

上面的证明中的信息量很大,我们来逐一进行解释:

问题1:

这是什么符号?以它定义的基本运算都有什么?

这个符号被称为

算符,为何起了这样一个名字呢?因为有一种竖琴的名字叫做纳布拉琴,其外形酷似倒三角,所以这个倒三角算符就以
来命名了。以
算符来定义的基本运算有:

梯度

散度

旋度

其中

  • 梯度运算是对标量场的运算,其运算结果是一个矢量场。
  • 散度运算是对矢量场的运算,其运算结果是一个标量场。
  • 旋度运算是对矢量场的运算,其运算结果是一个矢量场,且该矢量场的方向满足右手螺旋定则。

问题2:什么是梯度,散度,旋度呢?

撇去这三种运算的运算细节不说,这三个概念展开说的话会有很多内容,所以,我想谈一谈我本人对这三种运算的理解。

梯度

梯度这个概念的根本是方向导数。梯度又被称为斜度,顾名思义,其大小本身描述的是一种倾斜程度对于平面上的曲线来说,曲线上某一点的梯度的大小就是曲线在该点处的切线的倾斜程度,梯度越大就说明这个切线的倾斜程度越大。而对于空间中的曲面来讲,梯度的大小表示的则是该曲面上的一点处的最大倾斜程度。

举一个通俗的例子:考虑一座山,这座山上一点处的梯度是在该点处的坡度的最陡的方向。而梯度的大小表示的是这个最陡的坡度的大小。

散度:

散度这个概念根据字面意思理解似乎描述的是一种发散程度,但其实并不是这样的。我理解的散度描述的是一种递进关系:首先其描述一个矢量场是否发散,进而,如果发散,那这个发散的强度是多少。发散也分为正发散或者负发散,正发散就是普通的发散,而负发散指的是聚集。所以如果散度的值为负,说明这个矢量场在向某一点聚集(这个点可以看做是一个),反之,如果如果散度的值为正,则说明这个矢量场在某一点(这个点可以看做是一个)向外发散。如果一个矢量场的散度为零,则说明这个矢量场既不聚集也不发散,即矢量场中的每个矢量都是相互平行的。所以,散度不为零的场叫做有散场或者有源场,散度为零的场叫做无散场或者无源场。

fc1055312a1c0fff39f448282deea9ce.png

旋度:

旋度这个概念在我的另一篇为文章中已经解释的很清楚了,各位朋友可以看一下。为了省去一些不必要的内容,我会说明一下从哪里看到哪里,下面是链接和说明:

zdr0:[如何让人人都理解复分析(二)]---Cauchy积分定理​zhuanlan.zhihu.com
说明:从“ 旋度(Curl)或称 回转度(Rotation),是矢量分析中的一个矢量算子......”看到“...... 3.我下一个不太严谨的结论:无旋场的场线都是直线。但场线是直线的场不一定是无旋场。”即可。

问题3:

散度定理描述了什么?

散度定理是一个非常重要的定理,这个定理之所以重要的原因之一是它提供了一种积分转换关系,十分巧妙的将矢量场的三重积分转换成了矢量场散度的曲面积分,即:

这种转换关系可以很好的解释一些物理现象。比如这里的电

定理。

问题4: 电

定理又描述了什么?

为了回答这个问题,首先必须知道电通量

是什么。不说电通量的严格定义,说一说如何理解电通量:电通量指的是穿过一个曲面的
有效的电场线的根数。这个有效的电场线根数如何定义呢?

通过曲面上某一点的有效电场线指的是这根电场线平行于曲面在一点的法向量的分量,换句话说,这一根有效电场线在这一点垂直于曲面。穿过这个曲面的一个面积微元的有效电场线根数可以由电场强度和这个面积微元的法向量的内积进行定义,即:

59d260f7a98f8bc2de5470841b7c2663.png

对上式在这个曲面

上进行积分就可以求出电通量了,即穿过这个曲面的有效电场线根数:

一般的,曲面

的法向量可以直接记为

若曲面

是闭合曲面,则上面的积分记为:

问题4.1:对于闭合曲面来讲,有什么进一步的结论?

显然的是,穿过一个不含点电荷的闭合曲面的电场线的总根数为

,因为穿入的等于穿出的。那对于一个包含点电荷的闭合曲面来讲又有何结论呢?由于点电荷要么“放出”电场线,要么“吸收”电场线,所以,若一个闭合曲面包含了一个点电荷,那么穿过这个闭合曲面的电通量必然不会为零,因为只有穿出的或者只有穿入的(这里纯粹的穿出(发散)或穿入(聚集)就可以与散度扯上关系了。这也可以看做
散度定理的一种证明方式。),那么穿过这个闭合曲面的电通量的值是多大呢?
给了我们答案,这个电通量的值就是:
,其中
叫做
真空中的介电常数。也就是说:

这就是电

定理了。

66500da8f6a5d6350199fae9632dc949.png

注:证明说明

利用

散度定理可以将矢量场曲面积分转化为矢量场散度的三重积分,即:

而空间中的带电体的电荷量也可以表示为其电荷密度的三重积分,即:

从而:

这样就得到了电

定理的微分形式了。

2.

第二方程---磁
公式

表达式

微分形式:

积分形式:

物理意义穿过任意闭合曲面的磁通量等于零,说明磁场是无源场。


我们由微分形式来推导一下积分形式

引理:
散度定理:
散度定理的数学意义:任意矢量场
的散度的体积积分(三重积分)等于该矢量场在任一个包围该体积的闭合曲面上的曲面积分。

则:

最终有:

公式中的所有概念都与电
公式的概念类似,换个字母就可以了。

需要说明的是

第一和第二方程不仅适用于静电(磁)场,同样也适用于时变电(磁)场。但接下来要介绍的第三和第四方程对于静电(磁)场和时变电(磁)场却有很大区别。我想直接介绍时变的情况,之后看看非时变情况下的表达式有何不同就可以了。磁通量的相关问题在下面第三方程的问题2中有回答。

3.

第三方程---
电磁感应定律

表达式:

微分形式:

积分形式:

物理意义:时变磁场会产生电场,从而在导体中产生感应电流。也可以说时变磁场产生感应电动势。


我们由微分形式来推导一下积分形式

引理:
定理:
定理的数学意义:一个矢量场
沿一闭合路径
的曲线积分等于这个矢量场
的旋度在任一个以这个闭合路径
为边界的曲面上的曲面积分。

则:

最终有:

这个证明中也出现了几个可能的问题:

问题1:电磁感应现象为何会出现?

首先我们要明确一个问题,电磁感性现象的原因和结果分别是什么?很显然,电磁感应的原因是时变磁场,而最终结果是产生了感应电流。为何会产生感应电流呢?因为产生了感生电场,这也是间接结果,因为先产生了感生电场,所以导致了导体中的自由电荷受到电场力的作用而运动,自由电荷的运动产生了电流。

上面只说明了为何会产生感生感应电流,这是最终结果,但是将原因和最终结果联系起来的桥梁并未作出解释,这个桥梁就是:为何未产生感生电场?下面做出解释

首先明确一个概念叫做电动势

:电磁学里的电动势分为两种:“
感生电动势”与“ 动生电动势”。根据
电磁感应定律,处于时变磁场的闭电路,由于磁场随着时间而改变,会有感生电动势出现于闭电路。感生电动势等于电场沿着闭电路的路径积分。

电动势并不是一个全新的概念,我们知道静电学里面有电势这个概念,电动势也是电势,只不过其“不静止”,所以加了一个动字。我们知道在静电学中静电场

与静电势
有十分密切的联系,即:
,在电动力学中,电动势
与感生电场
也有类似的关系:

也就是说感生电场的产生是由于产生了感应电动势。最后将

定义为了:

从而有了:

总结一下就是:时变磁场

时变磁通量
电动势
感生电场
感应电流。

而在静磁学中,磁场是非时变的,所以其产生的磁通量也就是非时变的,这个非时变的磁通量对时间的偏导数为零,所以在静磁学中有结论:

。也就是说静电场沿闭合路径的曲线积分为零。

问题2:

是什么?

上面已经提到过了,

叫做磁通量,其定义与电通量类似:磁通量指的是穿过闭合曲面的有效磁感线的根数。有效磁感线的定义与有效电场线的定义类似,我就不再赘述了。

之前说过,由于磁场(不论是静磁场还是时变的磁场)是无源场,所以穿过任意闭合曲面的磁通量

一定为零。(无源就说明不会有纯粹的穿入和纯粹的穿出),也就是磁
定理的积分形式表达的意义。

问题3:

定理描述了什么?

定理与
散度定理一样,也具有相当的地位。
定理也是提供了一种积分转换关系,将矢量场在一个闭合路径上的积分转化成了这个矢量场的旋度在以这个闭合路径为边界的任意一个曲面上的积分,即:

利用

定理也可以很好的解释一些物理现象。比如这里的
电磁感应定律和下面要介绍的
方程。

问题4:静电场的

第三方程有何不同?

在问题1的最后提到了一个有关静磁场的结论,即:静电场沿闭合路径的曲线积分为零,用公式表达为:

对等式用

定理有:
,所以对于静电场而言
,也就是说静电场的旋度为零,即静电场是无旋场。

所以,对于静电场的非静电场,

第三方程的表达式是不一样的:

对于静电场(第二静电学基本方程):

微分形式:

积分形式:

对于非静电场(

电磁感应定律):

微分形式:

积分形式:

4.

第四方程---
方程

表达式:

微分形式:

积分形式:

物理意义:时变电场和电流可以产生磁场,其中

称为
位移电流密度,
叫做位移电流。

我们由微分形式推导一下积分形式

引理:
定理:
定理的数学意义:一个矢量场
沿一闭合路径
的曲线积分等于这个矢量场
的旋度在任一个以这个闭合路径
为边界的曲面上的曲面积分。

则:

最终有:

这个方程要说的问题最多。

问题1:

是什么?

这个矢量称为电流密度场,指的是单位截面面积上的电流量。若截面是一个曲面,那么流过这个曲面的总电流可以表示为:

。这个总电流应该被称作有效电流,指的是有效电流密度的曲面积分,有效电流密度指的就是电流密度
平行于曲面的法向量
的分量,即:

552b323c541da94ca6244b1e3bd921a9.png

问题2:什么是位移电流?这一项是怎么来的?

回答这个问题之前,需要给出连续性方程的概念:

这个偏微分方程叫做(电磁学的)连续性方程,它是一个描述电荷传输行为的偏微分方程。

这个方程是说:电路中电流密度的散度和电荷密度随时间的变化率之和为零。是由电荷守恒定律推得的。

由于在各自适当条件下,质量、能量、动量、电荷等等,都是守恒量,很多种守恒量的传输行为都可以用连续性方程来描述。

还要先回答问题3才能回答这个问题:

问题3:静磁场的

方程是什么样子的?

在一开始提到的物理意义中我们知道时变电场可以产生磁场,那是如何产生的呢?我们观察

第四方程不难发现时变电场在闭合回路中产生了时变电通量
,而这个时变的电通量是时变电场可以产生磁场的直接原因。我们知道如果这个电场是静电场(非时变)的话,那么这个静电场在固定的闭合回路中所产生的电通量是常数(时间无关的),这个时间无关的电通量和非时变电场对时间的偏导数都为零,换句话说,静电场不会产生磁场,也就是说静磁场的
方程是没有位移电流这一项的,即:

静磁场的

方程(第二静磁学基本方程):

微分形式:

积分形式:

也叫做

方程或
环路定理,其中
叫做
真空中的磁导率需要注意的是无论电流是直流的还是交流的,都会产生磁场,区别是直流电产生的是非时变磁场,而交流电产生的是时变的磁场。

这个定理在在时变电场的情况下是有不足的,为何会不足呢?这就是第二个问题的答案了:

问题2的回答:

我们对上面的

环路定理的微分形式两边同时取散度有:

而旋度的散度必为零,即:

表示任意矢量)。也就是说等式的左边恒等于零,从而有:

但是等式右边的电流密度的散度却不一定恒等于零(只有在静磁学中才会有电流密度的散度

恒等于零),这就有问题了,这个等式在时变的情况下忽然间不成立了。我们突然发现之前说的连续性方程里面包含了电流密度的散度,从而我们想看看能否使用连续性方程来弥补这个方程的不足,由连续性方程我们得到:

我们对

定理得到:

从而有:

既然

等于零,那我就定义一个新的电流密度
好了,这样将这个新的电流密度代入到
环路定理中得:

利用

定理积分有:

在等式两边同取散度的话就有:

这样就保证了第四方程的永久成立性。所以在静磁场的

环路定理的基础上,
独立提出了
第四方程。

这样真空中的

方程组就彻底介完了,也顺带说了静电学和静磁学中的基本方程组,我们来复习一下:

静电学和静磁学的基本方程组

微分形式:

积分形式:

方程组:

微分形式:

积分形式:


还没有关注专栏《数学及自然科学》的朋友赶快关注吧!您的支持是我最大的动力!

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值