1.15 聊天机器人的定义及发展现状
聊天机器人,是一种通过自然语言模拟人类进行对话的程序。通常运行在特定的软件平台上,如 PC 平台或者移动终端设备平台,而类人的硬件机械体则不是必需的承载设备。
聊天机器人的研究源于图灵(Alan M. Turing)在1950 年《Mind》上发表的文章《Computing Machineryand Intelligence》,文章开篇提出了“机器能思考吗?”(“Can machines think?”)的设问,并且通过让机器参与一个模仿游戏(Imitation Game)来验证“机器”能否“思考”,进而提出了经典的图灵测试(TuringTest)。图灵测试被认为是人工智能的终极目标,图灵本人因此也被称作“人工智能之父”。
最早的聊天机器人 ELIZA [1] 诞生于 1966 年,由麻省理工学院(MIT)的约瑟夫·魏泽鲍姆(JosephWeizenbaum)开发,用于在临床治疗中模仿心理医生。值得注意的是尽管 ELIZA 的实现技术仅为关键词匹配及人工编写的回复规则,但魏泽鲍姆本人对 ELIZA的表现感到吃惊,随后撰写了《Computer Power andHuman Reason》这本书,表达他对人工智能的特殊情感。
1988 年,加州大学伯克利分校(UC Berkeley)的罗伯特·威林斯基(Robert Wilensky)等人开发了名为 UC(UNIX Consultant) [2] 的聊天机器人系统。顾名思义,UC 是一款帮助用户学习怎样使用 UNIX 操作系统的聊天机器人。它具备了分析用户的语言,确定用户操作的目标,给出解决用户需求的规划,决定需要与用户沟通的内容,以英语生成最终的对话内容以及根据用户对 UNIX 系统的熟悉程度进行建模的功能。如果说 ELIZA 开启了智能聊天机器人时代,那么 UC则进一步推动了聊天机器人的智能化程度。
为了将图灵测试付诸实践,美国科学家兼慈善家休·勒布纳(Hugh G. Loebner)于 1990 年设立了人工智能年度比赛——勒布纳奖(Loebner Prize) [3] (包括 10 万美金的奖金和一块印有勒布纳与图灵头像的金牌)。勒布纳奖的设立旨在奖励首个与人类回复无差别的计算机程序,即聊天机器人系统,并以此推动图灵测试及人工智能的发展。
在勒布纳奖的推动下,聊天机器人的研究迎来了一个高潮,这里面较为代表性的聊天机器人系统是ALICE(Artificial Linguistic Internet Computer Entity) [4] 。受到ELIZA 聊天机器人的启发,理查德·华勒斯(Richard S.Wallace)博士在 1995 年开发了 ALICE 系统。ALICE曾经在 2000 年、2001 年和 2004 年三次问鼎勒布纳奖,并于 1998 年开始开源,目前全世界有超过 500个开发者为 ALICE 项目贡献代码。值得注意的是,随着 ALICE 一同发布的 AIML(Artificial IntelligenceMarkup Language)目前被广泛应用在移动端虚拟助手的开发中。尽管 ALICE 采用的是启发式模板匹配的对话策略,但是它仍然被认为是同类型聊天机器人中性能最好的系统之一。此外,还有用于查询英国电话黄页的 YAP [5] 、用于外语学习伴侣的 CSIEC [6] 、用于哈佛大学数学教学的 Sofia [7] 等,在这里暂不展开介绍。
近年来,基于聊天机器人系统的应用层出不穷。从应用场景的角度来看,可以分为在线客服、娱乐、教育、个人助理和智能问答五个种类。
在线客服聊天机器人系统的主要功能是同用户进行基本沟通,并自动回复用户有关产品或服务的问题,以实现降低企业客服运营成本、提升用户体验的目的。其应用场景通常为网站首页和手机终端。代表性的商用系统有小 I 机器人、京东的 JIMI 客服机器人等。用户可以通过与 JIMI 聊天了解商品的具体信息以及反馈购物中存在的问题等。值得称赞的是,JIMI 具备一定的拒识能力,即能够知道自己不能回答用户的哪些问题以及何时应该转向人工客服。
娱乐场景下聊天机器人系统的主要功能是同用户进行开放主题的对话,从而实现对用户的精神陪伴、情感慰藉和心理疏导等作用。其应用场景通常为社交媒体、儿童玩具等。代表性的系统如微软“小冰”、微信“小微”、“小黄鸡”、“爱情玩偶”等。其中微软“小冰”和微信“小微”除了能够与用户进行开放主题的聊天之外,还能提供特定主题的服务,如天气预报和生活常识等。
应用于教育场景下的聊天机器人系统根据教育的内容不同包括构建交互式的语言使用环境,帮助用户学习某种语言;在学习某项专业技能中,指导用户逐步深入地学习并掌握该技能;在用户的特定年龄阶段,帮助用户进行某种知识的辅助学习等。其应用场景通常为具备人机交互功能的学习、培训类软件以及智能玩具等。这里以科大讯飞公司的开心“熊宝”(具备移动终端应用软件和实体型玩具两种形态)智能玩具为例,“熊宝”可以通过语音对话的形式辅助儿童学习唐诗、宋词以及回答简单的常识性问题等。
个人助理类应用主要通过语音或文字与聊天机器人系统进行交互,实现个人事务的查询及代办功能,如天气查询、空气质量查询、定位、短信收发、日程提醒、智能搜索等,从而更便捷地辅助用户的日常事务处理。其应用场景通常为便携式移动终端设备。代表性的商业系统有 Apple Siri、Google Now、微软Cortana、出门问问等。其中,Apple Siri 的出现引领了移动终端个人事务助理应用的商业化发展潮流。AppleSiri 随着 IOS 5 一同发布,具备聊天和指令执行功能,可以视为移动终端应用的总入口。然而受到语音识别能力、系统本身自然语言理解能力的不足以及用户使用语音和 UI 操作两种形式进行人机交互时的习惯差异等限制,Siri 没能真正担负起个人事务助理的重任。
智能问答类的聊天机器人主要功能包括回答用户以自然语言形式提出的事实型问题和需要计算和逻辑推理型的问题,以达到直接满足用户的信息需求及辅助用户进行决策的目的。其应用场景通常作为问答服务整合到聊天机器人系统中。典型的智能问答系统除了 IBM Watson 之外,还有 Wolfram Alpha 和 Magi,后两者都是基于结构化知识库的问答系统,且分别仅支持英文和中文的问答。