二项式定理

前言

一、相关方法

  • “赋值法”普遍运用于恒等式,是一种处理二项式相关问题比较常用的方法。

二、二项式定理

\[(a+b)^n=C_n^0\cdot a^n\cdot b^0+C_n^1\cdot a^{n-1}\cdot b^1+C_n^2\cdot a^{n-2}\cdot b^2+\cdots+C_n^r\cdot a^{n-r}\cdot b^r+\cdots+C_n^n\cdot a^0\cdot b^n\]

项的排列规则:按照\(a\)的降幂排列同时按照\(b\)的升幂排列,每一项的次数(\(a\)\(b\)的指数之和)为\(n\),如果不按照这样的规则排列,由于加法具有交换律,故通项公式就没有意义;等式右边称为\((a+b)^n\)二项展开式,共有\(n+1\)项,其中各项的系数\(C_n^r(r=0,1,2,\cdots,n)\)称为二项式系数,\(C_n^r\cdot a^{n-r}\cdot b^r\)称为二项展开式的第\(r+1\)项,又称为二项式通项。故通项公式为\(T_{r+1}=C_n^r\cdot a^{n-r}\cdot b^r\)\(r=0,1,2,\cdots,n\)

  • 证明思路:

①由具体到抽象;

②组合数法;比如第一项,\(C_n^n\cdot a^n\cdot C_n^0\cdot b^0=C_n^0\cdot a^n\)

比如第二项,\(C_n^{n-1}\cdot a^{n-1}\cdot C_1^1\cdot b^1=C_n^1\cdot a^{n-1}\cdot b^1\)

其他项依此类推;

  • 应用时需要注意:

\(T_{r+1}=C_n^r\cdot a^{n-r}\cdot b^r\),可以表达展开式中的任意项,当\(n\)\(r\)确定,该项就随之确定;

\(T_{r+1}=C_n^r\cdot a^{n-r}\cdot b^r\)\(r=0,1,2,\cdots,n\),是展开式中的第\(r+1\)项,不是第\(r\)项;

③公式中\(a\)\(b\)的指数之和为\(n\),且\(a\)\(b\)的位置不能随意颠倒;

④要将通项公式中的系数和字母分离开,以便于解决计算问题;

⑤关于\((a-b)^n\)展开式的通项公式,要特别注意符号问题,\((a-b)^n=[a+(-b)]^n\)

三、赋值应用

  • ① 令\(a=1\)\(b=x\),则得到公式:

\[(1+x)^n=1+C_n^1x+C_n^2x^2+C_n^3x^3+\cdots+C_n^rx^r+\cdots+C_n^nx^n\]

  • ② 当需要求二项展开式的系数之和时,常将\((m+cx)^n\)展开为:

\[(m+cx)^n=a_0+a_1x+a_2x^2+a_3x^3+\cdots+a_nx^n\]

  • ③ 二项式系数之和

\((a+b)^n=C_n^0\cdot a^n\cdot b^0+C_n^1\cdot a^{n-1}\cdot b^1+C_n^2\cdot a^{n-2}\cdot b^2+\cdots+C_n^n\cdot a^0\cdot b^n\)中,

\(a=1\)\(b=1\),得到

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值