题目:
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at (0,0)
, (0,4)
, and (2,2)
:
1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point (0,2)
is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Hint:
- Try to solve it in one dimension first. How can this solution apply to the two dimension case?
链接: http://leetcode.com/problems/best-meeting-point/
题解:
很有意思的一道题目,假设二维数组中一个点到其他给定点的Manhattan Distance最小,求distance和。 因为在一维数组中这个distance最小的点就是给定所有点的median,题目又给定使用曼哈顿距离,我们就可以把二维计算分解成为两个一维的计算。应该还可以用DP的方法解决,判断用哪一种方法其实非常复杂,依赖于mn和排序的比较。我们使用一个getMin方法来计算x方向或者y方向到他们中点的距离和。
Time Complexity - Math.max(O(mn), O(nlogn)), Space Complexity - O(mn)。
public class Solution { public int minTotalDistance(int[][] grid) { List<Integer> xAxis = new ArrayList<>(); List<Integer> yAxis = new ArrayList<>(); for(int i = 0; i < grid.length; i++) { for(int j = 0; j < grid[0].length; j++) { if(grid[i][j] == 1) { xAxis.add(i); yAxis.add(j); } } } return getMin(xAxis) + getMin(yAxis); } private int getMin(List<Integer> list) { Collections.sort(list); int res = 0; int lo = 0, hi = list.size() - 1; while(lo < hi) { res += list.get(hi--) - list.get(lo++); // hi - mid + mid - lo = hi - lo } return res; } }
二刷:
还是用了简单地先遍历一遍数组,收集行坐标和列坐标,然后对两个list分别求一维Manhattan距离的方法。这里对列坐标list进行了排序。
Java:
Time Complexity - Math.max(O(mn), O(nlogn)), Space Complexity - O(mn)。
public class Solution { public int minTotalDistance(int[][] grid) { List<Integer> rows = new ArrayList<>(), cols = new ArrayList<>(); for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (grid[i][j] == 1) { rows.add(i); cols.add(j); } } } Collections.sort(cols); return getMinDist(rows) + getMinDist(cols); } private int getMinDist(List<Integer> list) { if (list == null || list.size() == 0) return Integer.MAX_VALUE; int median = list.get(list.size() / 2); int minDist = 0; for (int idx : list) { if (idx < median) minDist += median - idx; else minDist += idx - median; } return minDist; } }
Update:
遍历两次数组,分别对行列坐标进行收集,速度反而比较快。应该是不少test case中m < logn的缘故。
Time Complexity - O(mn), O(nlogn), Space Complexity - O(mn)。
public class Solution { public int minTotalDistance(int[][] grid) { List<Integer> rows = new ArrayList<>(), cols = new ArrayList<>(); for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (grid[i][j] == 1) rows.add(i); } } for (int j = 0; j < grid[0].length; j++) { for (int i = 0; i < grid.length; i++) { if (grid[i][j] == 1) cols.add(j); } } return getMinDist(rows) + getMinDist(cols); } private int getMinDist(List<Integer> list) { if (list == null || list.size() == 0) return Integer.MAX_VALUE; int median = list.get(list.size() / 2); int minDist = 0; for (int idx : list) { if (idx < median) minDist += median - idx; else minDist += idx - median; } return minDist; } }
Update:
不计算median,利用median - lo + hi - median = hi - lo,同时计算lo和hi到median的距离。来自大神larrywang2014的写法。
public class Solution { public int minTotalDistance(int[][] grid) { List<Integer> rows = new ArrayList<>(), cols = new ArrayList<>(); for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (grid[i][j] == 1) rows.add(i); } } for (int j = 0; j < grid[0].length; j++) { for (int i = 0; i < grid.length; i++) { if (grid[i][j] == 1) cols.add(j); } } return getMinDist(rows) + getMinDist(cols); } private int getMinDist(List<Integer> list) { if (list == null || list.size() == 0) return Integer.MAX_VALUE; int minDist = 0; int lo = 0, hi = list.size() - 1; while (lo < hi) { minDist += list.get(hi--) - list.get(lo++); // median - lo + hi - median = hi - lo } return minDist; } }
Reference:
https://leetcode.com/discuss/65336/14ms-java-solution
https://leetcode.com/discuss/65366/o-mn-java-2ms
https://leetcode.com/discuss/65464/java-python-40ms-pointers-solution-median-sort-explanation
https://leetcode.com/discuss/66401/the-only-person-dont-know-median-could-give-shortest-distance
http://math.stackexchange.com/questions/113270/the-median-minimizes-the-sum-of-absolute-deviations
https://leetcode.com/discuss/65510/simple-java-code-without-sorting
http://www.jiuzhang.com/problem/30/