dnn回归预测_我的DNN对所有测试数据(tensorflow)返回相同的预测结果

在尝试使用TensorFlow进行回归预测时,作者发现DNN模型只能正确预测首个测试数据,其余预测均与首个结果相同。代码中定义了权重初始化、前向传播函数,并使用梯度下降优化器进行训练。尽管模型能处理输入和输出维度,但在多次迭代后,测试集上的预测准确率并未提升。

我试图在我的数据上运行此代码以进行回归。看起来网络可以预测第一个测试数据,但所有其他预测与第一个测试数据相同。第一个函数为初始化生成随机权重。预测变量的数量是54,输出的数量是4.这里是我的代码:我的DNN对所有测试数据(tensorflow)返回相同的预测结果

def init_weights(shape):

weights = tf.random_uniform(shape, -2,2)

return tf.Variable(weights)

def forwardprop(X, w, b, sig):

if sig==1:

yhat = tf.sigmoid(tf.add(tf.matmul(X, w),b))

else:

yhat = tf.add(tf.matmul(X, w),0.)

return yhat

def main(itr,starter_learning_rate):

x_size = train_X.shape[1]

h_size = 4

y_size = train_y.shape[1]

X = tf.placeholder("float", shape = [None, x_size])

y = tf.placeholder("float", shape = [None, y_size])

w_1 = init_weights((x_size, h_size))

b_1 = tf.constant(1.)

w_2 = init_weights((h_size, y_size))

b_2 = tf.constant(1.)

yhat_1 = forwardprop(X, w_1, b_1, 1)

yhat = forwardprop(yhat_1, w_2, b_2, 0)

n_samples = train_X.shape[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值