【论文导读】NFM---FM与DNN相结合,附TF2.0复现代码

NFM(Neural Factorization Machine)是2017年提出的,结合FM和DNN的模型,通过特征交叉池化层改进FM的二阶特征交互。本文介绍了NFM的模型构建,包括Input与Embedding层、Bi-Interaction层、隐藏层和输出层,并阐述其创新点在于Bi-Interaction层,提供TF2.0复现代码。
摘要由CSDN通过智能技术生成

前言

本次分享一篇2017年由何向南教授发表的《Neural Factorization Machines for Sparse Predictive Analytics》。何向南教授的很多文章我都读过,NCF、ONCF等。本篇文章提出了一个模型---NFM。利用神经网络作为隐藏层代替了FM的特征二阶交互的部分,提高了模型的性能。文章末尾也给出了该模型的复现代码。

本文约1.5k字,预计阅读10分钟。

NFM

NFM(lNeural Factorization Machine)是2017年由新加坡国立大学的何向南教授等人在SIGIR会议上提出的模型。NFM是对FM的改进。作者认为FM或者其扩展,例如FFM,依旧只是一个二阶特征交叉的模型:

原文描述:However, these variants are all linear extensions of FM and model the second-order feature interactions only.

因此,作者将FM与深度神经网络相结合,利用FM的长处和DNN的特征交互的能力,来构建性能更为优越的模型---NFM。
即将FM模型的二阶交叉部分:

更改为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值