前言
本次分享一篇2017年由何向南教授发表的《Neural Factorization Machines for Sparse Predictive Analytics》。何向南教授的很多文章我都读过,NCF、ONCF等。本篇文章提出了一个模型---NFM。利用神经网络作为隐藏层代替了FM的特征二阶交互的部分,提高了模型的性能。文章末尾也给出了该模型的复现代码。
本文约1.5k字,预计阅读10分钟。
NFM
NFM(lNeural Factorization Machine)是2017年由新加坡国立大学的何向南教授等人在SIGIR会议上提出的模型。NFM是对FM的改进。作者认为FM或者其扩展,例如FFM,依旧只是一个二阶特征交叉的模型:
原文描述:However, these variants are all linear extensions of FM and model the second-order feature interactions only.
因此,作者将FM与深度神经网络相结合,利用FM的长处和DNN的特征交互的能力,来构建性能更为优越的模型---NFM。
即将FM模型的二阶交叉部分:
更改为: