函数的凹凸性证明_【最优化方法】拟凸函数定义及其证明

b1f62051c11411def0857b297ddbc0d8.png

一、下水平集的定义

函数

的下水平集(
)定义如下

  • 凸函数的下水平集是凸的
  • 下水平集是凸的,该函数不一定是凸函数(个人理解:原因在于下水平集描述的是定义域中的集合,无法反映值域的集合凹凸性

二、Epigraph的定义

函数

定义如下

凸函数
是凸的

如下证明:

所以

(由于
选取的
任意性, 所以不妨令
)并且

所以

是凸函数
  • 建立了凸集合与凸函数之间的联系(个人理解:
    和凸函数能够建立双向联系,是因为保留了
    定义域和值域中的信息,因此在一定程度上反映了函数的凹凸性)
  • 这里主要是想说明,下水平集和
    建立了函数凹凸性与集合凹凸性之间的联系,但需要注意的是下水平集和
    这两个桥梁并不都是完全“双向通车”的

三、拟凸函数的定义

函数

是拟凸函数(
)定义如下

性质 (利用这个性质来证明拟凸函数

四、拟凸函数的证明

4.1 一阶条件

如下证明:

,因此我们可以构造出一阶导数的形式如下

因此

,又因为

证明的目标是
,不妨令
,且
(如果
显然目标得证)

(1) 首先证明:如果

,则

由于

,那么由已知可得

同时由于

,那么由已知可得

代入可得:

因此
,因此
是处于
中间的高峰,那么我们不断选取
之间的一点,则
不断逼近于
,所以

(2) 其次证明

因为

,所以

4.2 二阶条件

如下证明:考虑一阶情况,并且
,则证明目标为

选取一点
上是拟凸的),假设
,那么存在
,使得
此时对于
的下水平集
不是凸的,矛盾!!

因此

如下证明:

已知
并且
,
,那么
是先减后增,因此根据下水平集可判断,
是拟凸函数

以上如果需要证明高阶,则可以利用下面性质降到一阶来证明

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值