3.4 函数的增减性与凹凸性

增减性

引子
这个引子直接就奔着结论去,从图像上理解,一阶导数表示斜率嘛
给个图在这里插入图片描述
增函数过一点做切线斜率是正的,减函数是负的
定义
f(x)∈c[a,b],(a,b)内可导,对于任意的x1,x2∈(a,b)且x1≠x2

  1. 当x1<x2时f(x1)<f(x2),称f(x)在[a,b]上是增函数
  2. 当x1<x2时f(x1)>f(x2),称f(x)在[a,b]上是增函数

证明
看到闭区间连续,开区间可导,想到啥?中值定理,没有条件3,想到哪个?拉格朗 日~
在这里插入图片描述
单调递减同理

例题

例1~3求函数单调性,例4开始证明不等式

例1
在这里插入图片描述
例2
在这里插入图片描述
例3
在这里插入图片描述
例4
在这里插入图片描述

例65在这里插入图片描述
例6
在这里插入图片描述

小结

一阶导数的一般应用就是表示函数的增减性,另一个重要的应用是证明不等式,不等式题目一般措施构造辅助函数

凹凸性

引子
凹凸性也不难理解,还是画个图,找结论在这里插入图片描述
函数的导数就是函数的变化率嘛,函数的一阶导数表现在图像上就是过某一点切线的斜率,那二阶导数就是函数变化率的变化率
左图f(x)的图像,过一点做切线,跟随x变大,斜率在不断变大,右图相反
那么上面两个图求一阶导数以后的函数图像是什么样子呢?在这里插入图片描述
降阶!把f’(x)和g’(x)看成f(x)和g(x),他俩一个增函数一个减函数,那应该是f’(x)>0,g’(x)<0,就是f’(x)和g’(x),再还原回去f‘’’(x)>0,g’‘’(x)<0
凹函数和凸函数的定义
y=f(x),x∈D
任意x1x2∈D且x1≠x2
f[(x1+x2)/2]<[f(x1)+f(x2)]/2,函数称为凹函数
f[(x1+x2)/2]>[f(x1)+f(x2)]/2,函数称为凸函数
上个图在这里插入图片描述

在这里插入图片描述

证明
在这里插入图片描述

在这里插入图片描述
结论:二阶导数判断函数凹凸性,二阶导数大于0,凹函数,二阶函数小于0,凸函数

例题

例1
在这里插入图片描述
例2
在这里插入图片描述
例3
在这里插入图片描述

本篇完。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值