朴素贝叶斯分类 和 拉普拉斯平滑(拉普拉斯处理 laplace smoothing)

朴素贝叶斯分类是一种生成式分类

p(y|x) = p(y,x) / p(x)
=p(x|y) * p(y) | p(x)
在训练的时候假设x的所有特征是相互独立的,所以p(x|y) = 所有p(xi | y) 的乘积 只要通过贝叶斯展开+有xi独立 就能得到
这个模型里的参数就是,给定y这个条件下,生成某个特征xi的概率(),以及y本身的分布(使用中心极限定理得到均值就能作为估计)

这里存在一个问题,就是如果在所有样本里,某个特征xi没出现过,那么根据中心极限定理得到均值就是0
那么最后的乘积就是0

这个结果对于实际来说不太合理,对于训练样本中没出现过的特征,实际的测试的时候,也是有可能出现

所以需要做 拉普拉斯平滑

就是在用中心极限定理得到均值 的时候 分子分母同时加上一个数,这样每个特征的条件概率肯定不为0了
一般分子加1,分母加的是 分类数

转载于:https://www.cnblogs.com/brainstorm/p/8888549.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值