1 最小二乘法
最小二乘使所有点到曲线的方差最小.利用最小二乘对扫描线上的所有数据点进行拟合,得到一条样条曲线,然后逐点计算每一个点Pi到样条曲线的欧拉距离ei(即点到曲线的最短距离),ε是距离的阈值,事先给定,如果ei≥ε,则将该点判断为噪点.
该方法最重要的事先拟合样条曲线。
确定曲线类型的方法:根据已知数据点类型初步确定曲线类型,经验观察初步尝试拟合函数类型.
曲线类型选择:直线,二次曲线,三次曲线,对数函数拟合,幂函数拟合,直至方差最小。
直线:f(X1) = aX1 + b;
二次曲线:f(X1) = aX12 + bX1 + c;
对数函数:f(X1) = a + b log(X1);
幂函数: f(X1) = aX1b
曲线方程参数求解方法:
已知数据点(Xi , Yi)(i = 0,1,2,3…n);Ø为所有次数不超过n的多项式函数;
求${f_k}\left( { {X_i}} \right) = \mathop \sum \limits_{k = 0}^n {a_k}X_i^k$(当k=1,为线性拟合,当k>1为多项式拟合)
注:特殊

本文介绍了最小二乘法的原理,通过让所有数据点到拟合曲线的方差最小来确定曲线。讨论了直线、二次曲线等多种曲线类型的拟合,并通过求解偏导数为零的方程组来确定系数。还提到了最小二乘法在处理直线拟合时易受噪声点影响的问题,提出了Hough变换作为优化方法,分析了其参数空间投票和直线检测的精度问题。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



