链表
定义
数字域和指针域
种类
单链表,双链表,循环链表
链表的存储方式
链表是通过指针域的指针链接在内存中各个节点。
所以链表中的节点在内存中不是连续分布的 ,而是散乱分布在内存中的某地址上,分配机制取决于操作系统的内存管理。
删除链表
增加链表
与数组的对比
再把链表的特性和数组的特性进行一个对比,如图所示:
数组在定义的时候,长度就是固定的,如果想改动数组的长度,就需要重新定义一个新的数组。
链表的长度可以是不固定的,并且可以动态增删, 适合数据量不固定,频繁增删,较少查询的场景。
移除链表元素
移除操作,就是让节点next指针直接指向下下一个节点就可以了,
那么因为单链表的特殊性,只能指向下一个节点,刚刚删除的是链表的中第二个,和第四个节点,那么如果删除的是头结点又该怎么办呢?
这里就涉及如下链表操作的两种方式:
- 直接使用原来的链表来进行删除操作。
- 设置一个虚拟头结点在进行删除操作。
这里我选择第二种方式,更好理解和记忆;
给链表添加一个虚拟头结点为新的头结点,此时要移除这个旧头结点元素1。
这样是不是就可以使用和移除链表其他节点的方式统一了呢?
来看一下,如何移除元素1 呢,还是熟悉的方式,然后从内存中删除元素1。
最后呢在题目中,return 头结点的时候,别忘了 return dummyNode->next;
, 这才是新的头结点
/**
* 时间复杂度 O(n)
* 空间复杂度 O(1)
* @param head
* @param val
* @return
*/
public ListNode removeElements(ListNode head, int val) {
// 设置一个虚拟的头结点
ListNode dummy = new ListNode();
dummy.next = head;
ListNode cur = dummy;
while (cur.next != null) {
if (cur.next.val == val) {
cur.next = cur.next.next;
} else {
cur = cur.next;
}
}
return dummy.next;
}
设计链表
设计的为单链表时
我分析这个代码的思路,因为是链表,内存空间不是连续的,所以对那个Index的理解不明确;
而且又是单链表,只有一个next指针,所以分析的时候要注意什么找到什么链表
思路
这是链表最基础的操作,牢记于心!
首先初始化:由于给的是链表:MyLinkedList ,需要初始化size(长度),listnode(头节点)。而题目没有给出listnode的定义,需要自己定义一个ListNode类,记得定义构造函数,不然在MyLinkedList初始化的时候无法直接赋值。
1.核心是addAtIndex(int index, int val);需要判断index,如果大于size,返回;
如果<0,令其=0;
执行插入,由于是index的前面插入,所以要找到index的前驱节点:循环次数=index;插入时先将新节点与pre.next连接,再将pre.next=新节点。这样是为了防止先执行 pre.next=新节点,会断链找不到后面的链表。
2.addAtHead,addAtTail直接调用addAtIndex即可。
3.deleteAtIndex(int index),首先找到index的前驱节点,然后将pre.next=pre.next.next即可。
4.get(int index):首先进行有效值判断,然后for循环即可。这里不需要找到前驱节点,因此循环次数是Index+1.
解题过程
刚开始用的是while循环,每次pre指针往后移动的时候,Index--;这样肯定没有for循环看着舒适。而且没有搞明白什么时候需要找到先驱节点(插入,删除),以及循环多少次可以找到先驱节点(当pre=head的时候,循环次数=index)。以及不会写列表的构造函数(size,listnode),不过我现在都会啦~!
//单链表
class ListNode {
int val;
ListNode next;
ListNode(){}
ListNode(int val) {
this.val=val;
}
}
class MyLinkedList {
//size存储链表元素的个数
int size;
//虚拟头结点
ListNode head;
//初始化链表
public MyLinkedList() {
size = 0;
head = new ListNode(0);
}
//获取第index个节点的数值,注意index是从0开始的,第0个节点就是头结点
public int get(int index) {
//如果index非法,返回-1
if (index < 0 || index >= size) {
return -1;
}
ListNode currentNode = head;
//包含一个虚拟头节点,所以查找第 index+1 个节点
for (int i = 0; i <= index; i++) {
currentNode = currentNode.next;
}
return currentNode.val;
}
public void addAtHead(int val) {
ListNode newNode = new ListNode(val);
newNode.next = head.next;
head.next = newNode;
size++;
// 在链表最前面插入一个节点,等价于在第0个元素前添加
// addAtIndex(0, val);
}
public void addAtTail(int val) {
ListNode newNode = new ListNode(val);
ListNode cur = head;
while (cur.next != null) {
cur = cur.next;
}
cur.next = newNode;
size++;
// 在链表的最后插入一个节点,等价于在(末尾+1)个元素前添加
// addAtIndex(size, val);
}
// 在第 index 个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。
// 如果 index 等于链表的长度,则说明是新插入的节点为链表的尾结点
// 如果 index 大于链表的长度,则返回空
public void addAtIndex(int index, int val) {
if (index > size) {
return;
}
if (index < 0) {
index = 0;
}
size++;
//找到要插入节点的前驱
ListNode pred = head;
for (int i = 0; i < index; i++) {
pred = pred.next;
}
ListNode toAdd = new ListNode(val);
toAdd.next = pred.next;
pred.next = toAdd;
}
//删除第index个节点
public void deleteAtIndex(int index) {
if (index < 0 || index >= size) {
return;
}
size--;
//因为有虚拟头节点,所以不用对Index=0的情况进行特殊处理
ListNode pred = head;
for (int i = 0; i < index ; i++) {
pred = pred.next;
}
pred.next = pred.next.next;
}
}
当设计的为双链表时
class MyLinkedList {
//记录链表中元素的数量
int size;
//记录链表的虚拟头结点和尾结点
ListNode head,tail;
public MyLinkedList() {
//初始化操作
this.size = 0;
this.head = new ListNode(0);
this.tail = new ListNode(0);
//这一步非常关键,否则在加入头结点的操作中会出现null.next的错误!!!
head.next=tail;
tail.prev=head;
}
public int get(int index) {
//判断index是否有效
if(index>=size){
return -1;
}
ListNode cur = this.head;
//判断是哪一边遍历时间更短
if(index >= size / 2){
//tail开始
cur = tail;
for(int i=0; i< size-index; i++){
cur = cur.prev;
}
}else{
for(int i=0; i<= index; i++){
cur = cur.next;
}
}
return cur.val;
}
public void addAtHead(int val) {
//等价于在第0个元素前添加
addAtIndex(0,val);
}
public void addAtTail(int val) {
//等价于在最后一个元素(null)前添加
addAtIndex(size,val);
}
public void addAtIndex(int index, int val) {
//index大于链表长度
if(index>size){
return;
}
size++;
//找到前驱
ListNode pre = this.head;
for(int i=0; i<index; i++){
pre = pre.next;
}
//新建结点
ListNode newNode = new ListNode(val);
newNode.next = pre.next;
pre.next.prev = newNode;
newNode.prev = pre;
pre.next = newNode;
}
public void deleteAtIndex(int index) {
//判断索引是否有效
if(index>=size){
return;
}
//删除操作
size--;
ListNode pre = this.head;
for(int i=0; i<index; i++){
pre = pre.next;
}
pre.next.next.prev = pre;
pre.next = pre.next.next;
}
}
/**
* Your MyLinkedList object will be instantiated and called as such:
* MyLinkedList obj = new MyLinkedList();
* int param_1 = obj.get(index);
* obj.addAtHead(val);
* obj.addAtTail(val);
* obj.addAtIndex(index,val);
* obj.deleteAtIndex(index);
*/
反转链表
这个题目有点难理解
方法一:双指针法
思路分析:
class Solution {
public ListNode reverseList(ListNode head) {
//申请节点,pre和 cur,pre指向null
ListNode pre = null;
ListNode cur = head;
ListNode tmp = null;
while(cur!=null) {
//记录当前节点的下一个节点
tmp = cur.next;
//然后将当前节点指向pre
cur.next = pre;
//pre和cur节点都前进一位
pre = cur;
cur = tmp;
}
return pre;
}
}
方法二:递归的方法
看懂了题解,但是自己能不能写出来是一个问题
多国几遍吧这个题目
其中我们应该关心的主要有三点:
返回值
调用单元做了什么
终止条件
class Solution {
public ListNode reverseList(ListNode head) {
return recur(head, null); // 调用递归并返回
}
private ListNode recur(ListNode cur, ListNode pre) {
if (cur == null) return pre; // 终止条件
ListNode res = recur(cur.next, cur); // 递归后继节点
cur.next = pre; // 修改节点引用指向
return res; // 返回反转链表的头节点
}
}
两两交换链表中的节点
这个思路比递归好理解,借助了一个stack
我们利用一个 stack,然后不断迭代链表,每次取出两个节点放入 stack 中,再从 stack 中拿出两个节点。
借助 stack 后进先出的特点,放进去的时候是 1,2 。拿出来的时候就是 2,1 两个节点了。
再把这两个节点串联起来,重复这个逻辑遍历完整个链表,就可以做到两两反转的效果了。
虽然用到了 stack,但因为只存了两个元素,所以空间复杂度还是 O(1),时间复杂度是 O(n)。
class Solution {
public ListNode swapPairs(ListNode head) {
if(head==null || head.next==null) {
return head;
}
//用stack保存每次迭代的两个节点
Stack<ListNode> stack = new Stack<ListNode>();
ListNode p = new ListNode(-1);
ListNode cur = head;
//head指向新的p节点,函数结束时返回head.next即可
head = p;
while(cur!=null && cur.next!=null) {
//将两个节点放入stack中
stack.add(cur);
stack.add(cur.next);
//当前节点往前走两步
cur = cur.next.next;
//从stack中弹出两个节点,然后用p节点指向新弹出的两个节点
p.next = stack.pop();
p = p.next;
p.next = stack.pop();
p = p.next;
}
//注意边界条件,当链表长度是奇数时,cur就不为空
if(cur!=null) {
p.next = cur;
} else {
p.next = null;
}
return head.next;
}
}
递归
终于看懂这个关于递归的题目解析,但是要是我自己写出来还是有难度的
解题思路
标签:链表
本题的递归和非递归解法其实原理类似,都是更新每两个点的链表形态完成整个链表的调整
其中递归解法可以作为典型的递归解决思路进行讲解
递归写法要观察本级递归的解决过程,形成抽象模型,因为递归本质就是不断重复相同的事情。而不是去思考完整的调用栈,一级又一级,无从下手。如图所示,我们应该关注一级调用小单元的情况,也就是单个 f(x)。
其中我们应该关心的主要有三点:
返回值
调用单元做了什么
终止条件
在本题中:
返回值:交换完成的子链表
调用单元:设需要交换的两个点为 head 和 next,head 连接后面交换完成的子链表,next 连接 head,完成交换
终止条件:head 为空指针或者 next 为空指针,也就是当前无节点或者只有一个节点,无法进行交换
class Solution {
public ListNode swapPairs(ListNode head) {
if(head == null || head.next == null){
return head;
}
ListNode next = head.next;
head.next = swapPairs(next.next);
next.next = head;
return next;
}
}