淘宝评论关键词提取方案

##相关文章 https://www.zhihu.com/question/20905103

方案 PS:语义分析的概要过程大家可以去程序员杂志七月刊上阅读

作为这个产品技术团队之一,简单说下这个过程: 1,按类目特征,拉取这个类目下的评论,进行分词,统计词频; 2,对词进行聚类,包含常用的LDA,结合本体库,将词进行归类和分类,建立语料库;(分类是最重要的一步,比如服装类目下学院风、淑女、熟女、休闲等都会归为款式这类) 3,属性情感搭配,建立属性词和情感词的连接关系,判断分句的情感; 4,属性词+情感词转换到属性类的情感,对句子进行位置标记; 5,将属性情感和位置标记结果build到搜索中,便于根据标签反向检索内容。

转载于:https://my.oschina.net/u/2307114/blog/833840

### 回答1: Python 淘宝评论关键词提取自然语言算法可以通过以下步骤实现: 1. 数据收集:首先,需要收集淘宝评论的数据集。可以通过爬取淘宝网站上的商品评论,或者借助淘宝开放平台的API获取评论数据。 2. 数据清洗:对收集到的评论数据进行清洗,去除无关信息如标点符号、特殊字符、数字等,并进行分词处理。可以使用Python中的正则表达式库和分词库(例如jieba)来实现。 3. 停用词处理:去除常见的停用词,如“的”、“了”、“是”等。可以使用预先定义好的停用词列表进行去除操作。 4. 构建关键词词频统计模型:根据处理后的评论数据,构建关键词词频统计模型。可以使用Python中的字典或者Counter类实现,统计每个关键词出现的次数。 5. 关键词筛选:根据关键词的词频,筛选出出现频率较高的部分词汇作为关键词。可以根据经验设定一个阈值,选择在该阈值以上的关键词。 6. 关键词解析与可视化:将筛选出的关键词进行解析和整理,并根据需要进行可视化展示。可以使用Python中的数据处理和可视化库(如pandas、matplotlib、wordcloud)来完成。 需要注意的是,关键词提取是一个复杂的自然语言处理任务,结果的准确性和可靠性会受到数据质量、分词效果、停用词处理等多方面因素的影响。为了提高算法的准确性,可以考虑使用更先进的自然语言处理算法,如基于神经网络的词嵌入模型(如Word2Vec、BERT)等。 ### 回答2: Python 淘宝评论关键词提取是通过自然语言算法实现的一种技术。自然语言算法是一种研究人类语言的计算机技术,通过在计算机系统中模拟人类语言处理的方式,进行文本分析、语义理解和情感分析等任务。 在淘宝评论关键词提取中,Python 可以使用自然语言处理库(如NLTK、spaCy等)来实现该算法。首先,需要通过抓取淘宝评论数据,将评论文本保存下来。然后,使用自然语言算法对这些评论进行处理。 关键词提取的目标是从评论中找出最具有代表性的词语。这些词语可以反映出用户对商品的关注点、满意度、特点等。常见的关键词提取方法包括:词频统计、TF-IDF(词频-逆文档频率)、TextRank等。 通过 Python 编程,在淘宝评论中进行关键词提取可以使用词频统计方法。具体步骤如下: 1. 首先,将评论文本进行分词处理,将文本拆分为一个个词语。 2. 接着,对每个词语进行词频统计,统计出每个词语在评论文本中出现的频率。 3. 根据词频排序,得到出现频率较高的词语,即为关键词。 4. 可以根据实际需求设置过滤词语的条件,如频率阈值、停用词等。 在使用自然语言算法进行关键词提取时,需要注意一些问题。例如,中文语境下的分词问题,可以选择合适的分词工具进行处理;同时,还需考虑到用户评论中的情感信息,可以使用情感分析的方法对评论进行情感判断,以更好地识别用户对商品的态度。 综上所述,Python 淘宝评论关键词提取主要依靠自然语言算法,通过分词、词频统计等方法,从评论文本中提取出具有代表性的关键词,从而帮助分析用户对商品的评价和需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值