放缩法【初级中阶辅导】

一、放缩法:

二、常见公式:

①删减项放缩:\(2-a<2(a>0)\)\(2+a>2(a>0)\),常常针对最终结果删减项放缩。

②指数式放缩:\(\cfrac{1}{2^n-1}\leq \cfrac{1}{2^{n-1}}\);常常针对每一项先放缩,这样就和等比数列求和相关,

③平方式放缩:由于\(n(n-1)<n^2<n(n+1)\),由倒数法则得到\(\cfrac{1}{n(n+1)}<\cfrac{1}{n^2}<\cfrac{1}{n(n-1)}\)

从而得到\(\cfrac{1}{n}-\cfrac{1}{n+1}=\cfrac{1}{n(n+1)}<\cfrac{1}{n^2}<\cfrac{1}{n(n-1)}=\cfrac{1}{n}-\cfrac{1}{n-1}\)

常常针对每一项先放缩,和裂项相消法关联。

④平方式放缩:\(\cfrac{1}{n^2}<\cfrac{1}{n^2-1}=\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n+1})\),常针对每一项先放缩,和裂项相消法关联。

⑤根式放缩:\(2(\sqrt{n+1}-\sqrt{n})<\cfrac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{n-1})\),常常针对每一项先放缩,和裂项相消法关联。

⑥利用\((1+x)^n\)的二项展开式进行放缩。对展开式的结果删减项放缩。

三、放缩模式

①先求和后放缩;利用等差、等比先求得结果,再针对结果通过删减项放缩;

②先放缩后求和;先利用放缩公式对每一项放缩,然后利用等差、等比求和公式或裂项相消求和或累加法求和。

③先放缩后求和再放缩;前两个模式的综合。

④相关方法:裂项求和法,等差数列求和公式,等比数列求和公式,累加法,累乘法,不等式,

四、典例剖析:

例1【2017宝鸡中学第一次月考第21题改编】

已知函数满足\(f(n)-f(n-1)=4(n-1)\)\(n\in N^*\),且\(f(0)=1\)

①求\(f(n)\)的表达式;

分析:如果能意识到\(a_n=f(n)\),则应该想到用累加法求解,得到\(f(n)=2n^2-2n+1\)

②求证:\(\cfrac{1}{f(1)}+\cfrac{1}{f(2)}+\cfrac{1}{f(3)}+\cdots+\cfrac{1}{f(n)}<\cfrac{3}{2}\)

证明:由于\(\cfrac{1}{f(n)}=\cfrac{1}{2n^2-2n+1}<\cfrac{1}{2n^2-2n}=\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n})\)

第一项保持不动,\(\cfrac{1}{f(1)}=1\)

\(\cfrac{1}{f(2)}<\cfrac{1}{2}(\cfrac{1}{1}-\cfrac{1}{2})\)

\(\cfrac{1}{f(3)}<\cfrac{1}{2}(\cfrac{1}{2}-\cfrac{1}{3})\)

\(\cdots\)

\(\cfrac{1}{f(n)}<\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n})\)

\(\cfrac{1}{f(1)}+\cfrac{1}{f(2)}+\cfrac{1}{f(3)}+\cdots+\cfrac{1}{f(n)}\)

\(=1+\cfrac{1}{2}[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots+(\cfrac{1}{n-1}-\cfrac{1}{n})]\)

\(=1+\cfrac{1}{2}(1-\cfrac{1}{n})=\cfrac{3}{2}-\cfrac{1}{2n}<\cfrac{3}{2}\)

例2【2017全国卷2,理科第15题高考真题改编】

已知等差数列 \(\{a_n\}\)的前\(n\)项和为\(S_n\)\(a_3=3,S_4=10\),数列\(\{\cfrac{1}{S_n}\}\)的前\(n\)项和为\(T_n=\sum\limits_{k=1}^n{ \cfrac{1}{S_k}}\),证明:\(1\leq T_n<2\)

分析:由\(a_1+2d=3\)\(4a_1+6d=10\)

容易计算出\(a_n=n\),故\(S_n=\cfrac{n(n+1)}{2}\)

则有\(\cfrac{1}{S_n}=\cfrac{2}{n(n+1)}=2(\cfrac{1}{n}-\cfrac{1}{n+1})>0\)

\(\sum\limits_{k=1}^n {\cfrac{1}{S_k}}=2[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots +(\cfrac{1}{n}-\cfrac{1}{n+1})]\)

\(=2(1-\cfrac{1}{n+1})<2\)

又由于\(\cfrac{1}{S_n}=\cfrac{2}{n(n+1)}>0\),故数列\(\{\cfrac{1}{S_n}\}\)的前\(n\)项和\(T_N\)单调递增,

\(T_n\ge T_1=1\),故\(1\leq T_n<2\)

解后反思:

1、本题目先求和后放缩的证明模式,高考考查的重点。

2、这类题目的求和方法常常和裂项相消法关联;

3、利用的放缩原理:左边界利用单调性,右边界利用放缩法。

例3【改编】

设数列\(\{a_n\}\)的通项公式为\(a_n=\cfrac{1}{2^n-1}\),其前\(n\)项和为\(S_n\),求证:\(1\leq S_n<2\)

证明:由于\(2^n-1\ge 2^{n-1}\)(当\(n=1\)时取等号,其他都取大于号)

\(a_n=\cfrac{1}{2^n-1}\leq \cfrac{1}{2^{n-1}}\)(当\(n=1\)时取等号,其他都取大于号) 即

\[a_1=1\]

\[a_2<\cfrac{1}{2^1}\]

\[a_3<\cfrac{1}{2^2}\]

\[\cdots\]

\[a_n<\cfrac{1}{2^{n-1}}\]

\(S_n=a_1+a_2+\cdots+a_n\)

$<1+\cfrac{1}{2^1} + \cfrac{1}{2^2}+\cdots+\cfrac{1}{2^{n-1}} $

\(=\cfrac{1\cdot(1-\cfrac{1}{2^n})}{1-\cfrac{1}{2}}\)

\(=2(1-\cfrac{1}{2^n})<2\),即\(S_n<2\)

\(a_n>0\),则\(\{S_n\}\)单调递增,故\(S_n\ge S_1=a_1=1\)

\(1\leq S_n<2\)

解后反思:

1、本题目需要先将每一项恰当放缩,然后利用等比数列求和公式求和,再利用放缩法证明不等式;先放缩后求和的证明模式,高考考查的次重点;

2、这类题目的难点在于第一步,到底怎样的放缩是恰当的,这需要一定的数学素养;

例4【2015\(\cdot\)高考安徽卷】

\(n\in N^*\)\(x_n\)是曲线\(y=x^{2n+2}+1\)在点\((1,2)\)处的切线与\(x\)轴交点的横坐标。

(1)、求数列\(\{x_n\}\)的通项公式。

分析:\(y'=(x^{2n+2}+1)'=(2n+2)x^{2n+1}\)

则曲线\(y=x^{2n+2}+1\)在点\((1,2)\)处的切线斜率为\(2n+2\)

从而切线方程为\(y-2=(2n+2)(x-1)\),令\(y=0\)

解得切线与\(x\)轴交点的横坐标\(x_n=1-\cfrac{1}{n+1}=\cfrac{n}{n+1}\)

所以数列\(\{x_n\}\)的通项公式为\(x_n=\cfrac{n}{n+1}\)

(2)、记\(T_n=x_1^2x_3^2\cdots x_{2n-1}^2\),证明:\(T_n\ge \cfrac{1}{4n}\)

分析:由题设和(1)中的计算结果可知,

\(T_n=x_1^2x_3^2\cdots x_{2n-1}^2=(\cfrac{1}{2})^2\cdot (\cfrac{3}{4})^2\cdots (\cfrac{2n-1}{2n})^2\)

\(n=1\)时,\(T_1=\cfrac{1}{4}\)

\(n\ge 2\)时,由于\(x_{2n-1}^2=(\cfrac{2n-1}{2n})^2=\cfrac{(2n-1)^2}{(2n)^2}\)

\(>\cfrac{(2n-1)^2-1}{(2n)^2}=\cfrac{2n-2}{2n}=\cfrac{n-1}{n}\)

所以,\(T_n>(\cfrac{1}{2})^2\times \cfrac{1}{2}\times \cfrac{2}{3}\times \cdots \cfrac{n-1}{n}=\cfrac{1}{4n}\)

综上可知,对任意的\(n\in N^*\),均有\(T_n\ge \cfrac{1}{4n}\)

例5求证:\(2<(1+\cfrac{1}{n})^n<3\),其中\(n\in N^*\)\(n\ge 2\)

分析:由二项展开式可知\[(1+\cfrac{1}{n})^n=1+C_n^1\cdot \cfrac{1}{n}+C_n^2\cdot \cfrac{1}{n^2}+\cdots+C_n^n\cdot \cfrac{1}{n^n}\]

由于各项均为正数,且\(n\in N^*\),删减项放缩法得到,

\((1+\cfrac{1}{n})^n>1+C_n^1\cdot \cfrac{1}{n}=2\)

又由于\((1+\cfrac{1}{n})^n=1+C_n^1\cdot \cfrac{1}{n}+C_n^2\cdot \cfrac{1}{n^2}+\cdots+C_n^n\cdot \cfrac{1}{n^n}\)

\(=1+1+\cfrac{1}{2!}\cdot \cfrac{n-1}{n}+\cfrac{1}{3!}\cdot \cfrac{(n-1)(n-2)}{n^2}+\cdots+\cfrac{1}{n!}\cdot \cfrac{(n-1)\times (n-2)\times \cdots\times 2\times 1}{n^{n-1}}\)

\(<1+1+\cfrac{1}{2!}+\cfrac{1}{3!}+\cdots +\cfrac{1}{n!}\)

\(<1+1+\cfrac{1}{2}+\cfrac{1}{2^2}+\cdots +\cfrac{1}{2^{n-1}}\)

$=1+\cfrac{1-\cfrac{1}{2^n}}{1-\cfrac{1}{2}} $

\(=3-\cfrac{1}{2^{n-1}}<3\)

\(2<(1+\cfrac{1}{n})^n<3\),证毕。

反思:也可以考虑使用数学归纳法证明。

转载于:https://www.cnblogs.com/wanghai0666/p/5867164.html

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值