10分钟入门opengl投影变换推导(内含mathjax公式)

 

perspective projection


title: perspective projection tags: ["openGL", "Markdown", "mathjax"] notebook: notes


关于投影变换

NDC

我们先介绍一个概念,NDC(Normalized Device Coordinates).我们在opengl右手坐标系里建立的模型都会映射到NDC.所以所有的点坐标的分量都会在[-1,1]间,超出的将被clip掉.尔后,NDC将坐标映射到viewport(视口),那为什么会有NDC这个中间产物?计算方便。不管是在后面映射视口,还是矩阵计算.特别要注意的是NDC左手坐标系

ndc

ndc 左为perspective projection,这跟我们看到的真实世界是一样的原理.有很强的3D视感.而右边.则是ortho projection,如果你学过工程制图.想必也很熟悉.没有近大远小的概念 下面,我们试着计算投影公式.这里我们用一下缩写

$$ \cases{l=left \\ r=right \\ f=far \\ n=near \\ b=bottom \\ t=top} $$

将下图的立方体空间映射到NDC空间.假设下面空间中一点$(x,y,z,w)$,求$(x_{ndc},y_{ndc},z_{ndc},w_{ndc})$

$$ \frac{r-l}{2}=\frac{x-l}{x_{ndc}+1} => x_{ndc}=\frac{2}{r-l}x+\frac{l+r}{l-r}\ $$

$y_{ndc},z_{ndc}$同理,很容易得到矩阵 $$ \left[ \begin{array}{cccccccccccccc} \frac{2}{r-l}&0&0& \frac{l+r}{l-r} \\ 0&\frac{2}{t-b}&0& \frac{b+t}{b-t} \\ 0&0&\frac{2}{f-n}& \frac{n+f}{n-f} \\ 0&0&0&1 \\ \end{array} \right] $$

frustum 1

 

同样,根据等比公式,得到如下公式,我们假设还一组中间变量$(x_{p},y_{p},z_{p},w_{p})$,代表$(x,y,z,w)$映射到near面上的点.(注意,这里还没有转换到NDC) $$ \cases{\frac{z}{x}=\frac{-n}{x_p}\\ \frac{z}{y}=\frac{-n}{y_p}\\ z_p=n} => \cases{x_p=\frac{-nx}{z} \\ y_p=\frac{-ny}{z} \\ z_p=n} $$ 到这,我们已经做完了投影影射90%的工作,接下来我们需要将投影点再映射到NDC

以$x_p$为例 $$ \cases{al+b=-1\\ ar+b=1} => \cases{a=\frac{2}{r-l}\\ b=\frac{l+r}{l-r}} $$ 也就是说 $x_p$ 在NDC里的映射是用这个线性函数

$$ x_{ndc}=\frac{2}{r-l}x_p+\frac{l+r}{l-r}=\frac{2}{r-l}\frac{-nx}{z}+\frac{l+r}{l-r} $$ 我们发现个问题..这写不进矩阵.但又发现,左右乘以z,有一些新发现

$$ z{x_{ndc}}=\frac{-2n}{r-l}x + \frac{l+r}{l-r} z $$

是不是有点感觉了

$$ \left[ \begin{array}{cccccccccccccc} \frac{-2n}{r-l}&0&\frac{l+r}{l-r}&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ \end{array} \right]\left[ \begin{array}{cccccccccccccc} x\\ 0\\ 0\\ 1\\ \end{array} \right] =\left[ \begin{array}{cccccccccccccc} {x_{ndc}}*z\\ 0\\ 0\\ 0\\ \end{array} \right]\ $$

同理,得到$y_p$

$$ \left[ \begin{array}{cccccccccccccc} \frac{-2n}{r-l}&0&\frac{l+r}{l-r}&0\\ 0&\frac{-2b}{t-b}&\frac{b+t}{b-t}&0\\ 0&0&0&0\\ 0&0&0&0\\ \end{array} \right]\left[ \begin{array}{cccccccccccccc} x\\ y\\ 0\\ 1\\ \end{array} \right]=\left[ \begin{array}{cccccccccccccc} x_{ndc} * z\\ y_{ndc}*z\\ 0\\ 0\\ \end{array} \right]\ $$

到这个地方我得停住说点别的. 上面公式中,我们求到的点都是放大了当前点的z倍. 所以必须除以z.而除z这个操作,学名叫 perspective divide,这个操作不用你操心,opengl 管线中会自动处理.自动除z??不对啊.我们在投影变换完后$z_{npc}$轴都在一个平面了.还原不出原始的z了啊! 人类的智慧是无穷的.我们可以将z复制到在w分量上,所以管线中的perspective divide操作其实就是除以w.而w=z.这样我们就得到矩阵第4行的值.要还原投影点,perspective divide将$(x_p,y_p,z_p)$分别除以z(z=w).得到的点为$(x_p/z,y_p/z,z_p/z,z)$, 请特别注意它们的下标!!要除的z是最原始点的z. 我们尝试构造第三行.

$$A,B,C,D$$

$$ \left[ \begin{array}{cccccccccccccc} \frac{-2n}{r-l}&0&\frac{l+r}{l-r}&0\\ 0&\frac{-2b}{t-b}&\frac{b+t}{b-t}&0\\ A&B&C&D\\ 0&0&1&0\\ \end{array} \right]\left[ \begin{array}{cccccccccccccc} x\\ y\\ z\\ 1\\ \end{array} \right]=\left[ \begin{array}{cccccccccccccc} x_{ndc_z} \\ y_{ndc_z}\\ z\\ z\\ \end{array} \right]\ $$

$$

$$ Ax+By+Cz+D=z_{ndc}*z $$ 我们知道这个方程组,有两个解(要注意z值是在动态变化的)

$$ \cases{ Ax+By+Cn+D=-1_n \\ Ax+By+Cf+D= 1_f } $$ 不妨令$A=B=0$,使其与$x,y$无关,解以下方程组 $$ \cases{ Cn+D=-n \ Cf+D=f }=>\cases{C=\frac{f+n}{f-n}\\ D=\frac{2fn}{f-n}} $$ 到此,我们求得投影变化矩阵为

$$ \left[ \begin{array}{cccccccccccccc} \frac{-2n}{r-l}&0&\frac{l+r}{l-r}&0\\ 0&\frac{-2b}{t-b}&\frac{b+t}{b-t}&0\\ 0&0&\frac{f+n}{f-n}&\frac{2fn}{f-n}\\ 0&0&1&0\\ \end{array} \right] $$

frustum 2

frustum 1 介绍的方法,需要6参数.而且不太直观.下面介绍另一种常见的构造投影变换的方法. 不管用什么方法,只要参数能够确定唯一的一个frustum.就行. 我们先看一张网上淘来的图..

frustum 2

fov=field of view.视野,我们假定它为相机上平面与下平面的夹角$\theta$.

near,跟 far 就很显然了. 我们还需要一个参数.那就是近平面的宽高比值记作ar(aspect ratio).

好了.参数有了. $\theta$,ar,n,f, 下面求矩阵 因为$z_{ndc}$的投影变换只与n,f有关,上面frustum 1中已经有公式.不再赘述. 比如先求$y_{ndc}$,我们垂直从+x看到-x.很容易得到如下公式 $$ \frac{y_p}{n}=\frac{y}{z} => y_p=\frac{y}{z}\dot{}n $$ 再将y映射到$y_{ndc}$: $$ \frac{y_{ndc}-(-1)}{2}=\frac{y_p-b}{tan\theta\dot{}n} $$ 而其中 $$ b=-tan\frac{\theta}{2}\dot{}n $$ 解方程得到: $$ y_{ndc}\dot{}z=\frac{y}{tan\frac{\theta}{2}} $$ 同理得到 $$ x_{ndc}\dot{}z=\frac{x}{ar\dot{}tan\frac{\theta}{2}} $$ 后面的计算frustum 1里已经说过.组合一下上面的结果为:

$$ \left[ \begin{array}{cccccccccccccc} \frac{1}{ar\dot{}tan\frac{\theta}{2}}&0&0&0\\ 0&\frac{1}{tan\frac{\theta}{2}}&0&0\\ 0&0&\frac{f+n}{f-n}&\frac{2fn}{n-f}\\ 0&0&1&0\\ \end{array} \right] $$

转载于:https://www.cnblogs.com/syncg/p/3719912.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值