rbtree.h
#ifndef _RED_BLACK_TREE_H_
#define _RED_BLACK_TREE_H_
#define RED 0 // 红色节点
#define BLACK 1 // 黑色节点
typedef int Type;
// 红黑树的节点
typedef struct RBTreeNode{
unsigned char color; // 颜色(RED 或 BLACK)
Type key; // 关键字(键值)
struct RBTreeNode *left; // 左孩子
struct RBTreeNode *right; // 右孩子
struct RBTreeNode *parent; // 父结点
}Node, *RBTree;
// 红黑树的根
typedef struct rb_root{
Node *node;
}RBRoot;
// 创建红黑树,返回"红黑树的根"!
RBRoot* create_rbtree();
// 销毁红黑树
void destroy_rbtree(RBRoot *root);
// 将结点插入到红黑树中。插入成功,返回0;失败返回-1。
int insert_rbtree(RBRoot *root, Type key);
// 删除结点(key为节点的值)
void delete_rbtree(RBRoot *root, Type key);
// 前序遍历"红黑树"
void preorder_rbtree(RBRoot *root);
// 中序遍历"红黑树"
void inorder_rbtree(RBRoot *root);
// 后序遍历"红黑树"
void postorder_rbtree(RBRoot *root);
// (递归实现)查找"红黑树"中键值为key的节点。找到的话,返回0;否则,返回-1。
int rbtree_search(RBRoot *root, Type key);
// (非递归实现)查找"红黑树"中键值为key的节点。找到的话,返回0;否则,返回-1。
int iterative_rbtree_search(RBRoot *root, Type key);
// 返回最小结点的值(将值保存到val中)。找到的话,返回0;否则返回-1。
int rbtree_minimum(RBRoot *root, int *val);
// 返回最大结点的值(将值保存到val中)。找到的话,返回0;否则返回-1。
int rbtree_maximum(RBRoot *root, int *val);
// 打印红黑树
void print_rbtree(RBRoot *root);
#endif
main.c
/**
* C语言实现的红黑树(Red Black Tree)
*
* @author skywang
* @date 2013/11/18
*/
#include <stdio.h>
#include <stdlib.h>
#include "rbtree.h"
#define rb_parent(r) ((r)->parent)
#define rb_color(r) ((r)->color)
#define rb_is_red(r) ((r)->color==RED)
#define rb_is_black(r) ((r)->color==BLACK)
#define rb_set_black(r) do { (r)->color = BLACK; } while (0)
#define rb_set_red(r) do { (r)->color = RED; } while (0)
#define rb_set_parent(r,p) do { (r)->parent = (p); } while (0)
#define rb_set_color(r,c) do { (r)->color = (c); } while (0)
/*
* 创建红黑树,返回"红黑树的根"!
*/
RBRoot* create_rbtree()
{
RBRoot *root = (RBRoot *)malloc(sizeof(RBRoot));
root->node = NULL;
return root;
}
/*
* 前序遍历"红黑树"
*/
static void preorder(RBTree tree)
{
if(tree != NULL)
{
printf("%d ", tree->key);
preorder(tree->left);
preorder(tree->right);
}
}
void preorder_rbtree(RBRoot *root)
{
if (root)
preorder(root->node);
}
/*
* 中序遍历"红黑树"
*/
static void inorder(RBTree tree)
{
if(tree != NULL)
{
inorder(tree->left);
printf("%d ", tree->key);
inorder(tree->right);
}
}
void inorder_rbtree(RBRoot *root)
{
if (root)
inorder(root->node);
}
/*
* 后序遍历"红黑树"
*/
static void postorder(RBTree tree)
{
if(tree != NULL)
{
postorder(tree->left);
postorder(tree->right);
printf("%d ", tree->key);
}
}
void postorder_rbtree(RBRoot *root)
{
if (root)
postorder(root->node);
}
/*
* (递归实现)查找"红黑树x"中键值为key的节点
*/
static Node* search(RBTree x, Type key)
{
if (x==NULL || x->key==key)
return x;
if (key < x->key)
return search(x->left, key);
else
return search(x->right, key);
}
int rbtree_search(RBRoot *root, Type key)
{
if (root)
return search(root->node, key)? 0 : -1;
}
/*
* (非递归实现)查找"红黑树x"中键值为key的节点
*/
static Node* iterative_search(RBTree x, Type key)
{
while ((x!=NULL) && (x->key!=key))
{
if (key < x->key)
x = x->left;
else
x = x->right;
}
return x;
}
int iterative_rbtree_search(RBRoot *root, Type key)
{
if (root)
return iterative_search(root->node, key) ? 0 : -1;
}
/*
* 查找最小结点:返回tree为根结点的红黑树的最小结点。
*/
static Node* minimum(RBTree tree)
{
if (tree == NULL)
return NULL;
while(tree->left != NULL)
tree = tree->left;
return tree;
}
int rbtree_minimum(RBRoot *root, int *val)
{
Node *node;
if (root)
node = minimum(root->node);
if (node == NULL)
return -1;
*val = node->key;
return 0;
}
/*
* 查找最大结点:返回tree为根结点的红黑树的最大结点。
*/
static Node* maximum(RBTree tree)
{
if (tree == NULL)
return NULL;
while(tree->right != NULL)
tree = tree->right;
return tree;
}
int rbtree_maximum(RBRoot *root, int *val)
{
Node *node;
if (root)
node = maximum(root->node);
if (node == NULL)
return -1;
*val = node->key;
return 0;
}
/*
* 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
*/
static Node* rbtree_successor(RBTree x)
{
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x->right != NULL)
return minimum(x->right);
// 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
Node* y = x->parent;
while ((y!=NULL) && (x==y->right))
{
x = y;
y = y->parent;
}
return y;
}
/*
* 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
*/
static Node* rbtree_predecessor(RBTree x)
{
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x->left != NULL)
return maximum(x->left);
// 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
Node* y = x->parent;
while ((y!=NULL) && (x==y->left))
{
x = y;
y = y->parent;
}
return y;
}
/*
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* px px
* / /
* x y
* / \ --(左旋)--> / \ #
* lx y x ry
* / \ / \
* ly ry lx ly
*
*
*/
static void rbtree_left_rotate(RBRoot *root, Node *x)
{
// 设置x的右孩子为y
Node *y = x->right;
// 将 “y的左孩子” 设为 “x的右孩子”;
// 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
x->right = y->left;
if (y->left != NULL)
y->left->parent = x;
// 将 “x的父亲” 设为 “y的父亲”
y->parent = x->parent;
if (x->parent == NULL)//修改红黑树的根节点
{
//tree = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
root->node = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
}
else
{
if (x->parent->left == x)
x->parent->left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else
x->parent->right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
}
// 将 “x” 设为 “y的左孩子”
y->left = x;
// 将 “x的父节点” 设为 “y”
x->parent = y;
}
/*
* 对红黑树的节点(y)进行右旋转
*
* 右旋示意图(对节点y进行左旋):
* py py
* / /
* y x
* / \ --(右旋)--> / \ #
* x ry lx y
* / \ / \ #
* lx rx rx ry
*
*/
static void rbtree_right_rotate(RBRoot *root, Node *y)
{
// 设置x是当前节点的左孩子。
Node *x = y->left;
// 将 “x的右孩子” 设为 “y的左孩子”;
// 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
y->left = x->right;
if (x->right != NULL)
x->right->parent = y;
// 将 “y的父亲” 设为 “x的父亲”
x->parent = y->parent;
if (y->parent == NULL)
{
//tree = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
root->node = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
}
else
{
if (y == y->parent->right)
y->parent->right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
else
y->parent->left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
}
// 将 “y” 设为 “x的右孩子”
x->right = y;
// 将 “y的父节点” 设为 “x”
y->parent = x;
}
/*
* 红黑树插入修正函数
*
* 在向红黑树中插入节点之后(失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* root 红黑树的根
* node 插入的结点 // 对应《算法导论》中的z
*/
static void rbtree_insert_fixup(RBRoot *root, Node *node)
{
Node *parent, *gparent;
// 若“父节点存在,并且父节点的颜色是红色”
while ((parent = rb_parent(node)) && rb_is_red(parent))
{
gparent = rb_parent(parent);
//若“父节点”是“祖父节点的左孩子”
if (parent == gparent->left)
{
// Case 1条件:叔叔节点是红色
{
Node *uncle = gparent->right;
if (uncle && rb_is_red(uncle))//没有节点进入该分支,如何构造?
{
rb_set_black(uncle);
rb_set_black(parent);
rb_set_red(gparent);
node = gparent;
continue;
}
}
// Case 2条件:叔叔是黑色,且当前节点是右孩子,叔叔不存在,也认为是黑色
if (parent->right == node)//插入80节点时,先左旋,后右旋
{
Node *tmp;
rbtree_left_rotate(root, parent);
tmp = parent;
parent = node;
node = tmp;
}
// Case 3条件:叔叔是黑色,且当前节点是左孩子。
rb_set_black(parent);//旋转前设置好颜色
rb_set_red(gparent);//旋转前设置好颜色
rbtree_right_rotate(root, gparent);
}
else//若父节点是祖父节点的右孩子
{
// Case 1条件:叔叔节点是红色
{
Node *uncle = gparent->left;//当插入60时,调整颜色即可,调整颜色后不符合红黑树,递归进行
if (uncle && rb_is_red(uncle))
{
rb_set_black(uncle);
rb_set_black(parent);
rb_set_red(gparent);
node = gparent;
continue;//继续进行调整
}
}
// Case 2条件:叔叔是黑色,且当前节点是左孩子,插入30时,先右旋,后左旋
if (parent->left == node)
{
Node *tmp;
rbtree_right_rotate(root, parent);
tmp = parent;
parent = node;
node = tmp;
}
// Case 3条件:叔叔是黑色,且当前节点是右孩子。
rb_set_black(parent);//旋转前设置好颜色
rb_set_red(gparent);//旋转前设置好颜色
rbtree_left_rotate(root, gparent);
}
}
// 将根节点设为黑色
rb_set_black(root->node);
}
/*
* 添加节点:将节点(node)插入到红黑树中
*
* 参数说明:
* root 红黑树的根
* node 插入的结点 // 对应《算法导论》中的z
*/
static void rbtree_insert(RBRoot *root, Node *node)
{
Node *y = NULL;
Node *x = root->node;
// 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
while (x != NULL)
{
y = x;
if (node->key < x->key)
x = x->left;
else
x = x->right;
}
rb_parent(node) = y;//找到父节点并把要插入节点的父节点的指针修改
//修改父节点的子节点指针
if (y != NULL)
{
if (node->key < y->key)
y->left = node; // 情况2:若“node所包含的值” < “y所包含的值”,则将node设为“y的左孩子”
else
y->right = node; // 情况3:(“node所包含的值” >= “y所包含的值”)将node设为“y的右孩子”
}
else
{
root->node = node; // 情况1:若y是空节点,则将node设为根
}
// 2. 设置节点的颜色为红色
node->color = RED;
// 3. 将它重新修正为一颗二叉查找树
rbtree_insert_fixup(root, node);
}
/*
* 创建结点
*
* 参数说明:
* key 是键值。
* parent 是父结点。
* left 是左孩子。
* right 是右孩子。
*/
static Node* create_rbtree_node(Type key, Node *parent, Node *left, Node* right)
{
Node* p;
if ((p = (Node *)malloc(sizeof(Node))) == NULL)
return NULL;
p->key = key;
p->left = left;
p->right = right;
p->parent = parent;
p->color = BLACK; // 默认为黑色
return p;
}
/*
* 新建结点(节点键值为key),并将其插入到红黑树中
*
* 参数说明:
* root 红黑树的根
* key 插入结点的键值
* 返回值:
* 0,插入成功
* -1,插入失败
*/
int insert_rbtree(RBRoot *root, Type key)
{
Node *node; // 新建结点
// 不允许插入相同键值的节点。
// (若想允许插入相同键值的节点,注释掉下面两句话即可!)
if (search(root->node, key) != NULL)
return -1;
// 如果新建结点失败,则返回。
if ((node=create_rbtree_node(key, NULL, NULL, NULL)) == NULL)
return -1;
rbtree_insert(root, node);
return 0;
}
/*
* 红黑树删除修正函数
*
* 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* root 红黑树的根
* node 待修正的节点
*/
static void rbtree_delete_fixup(RBRoot *root, Node *node, Node *parent)
{
Node *other;
while ((!node || rb_is_black(node)) && node != root->node)
{
if (parent->left == node)
{
other = parent->right;
if (rb_is_red(other))
{
// Case 1: x的兄弟w是红色的
rb_set_black(other);
rb_set_red(parent);
rbtree_left_rotate(root, parent);
other = parent->right;
}
if ((!other->left || rb_is_black(other->left)) &&
(!other->right || rb_is_black(other->right)))
{
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
rb_set_red(other);
node = parent;
parent = rb_parent(node);
}
else
{
if (!other->right || rb_is_black(other->right))
{
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
rb_set_black(other->left);
rb_set_red(other);
rbtree_right_rotate(root, other);
other = parent->right;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
rb_set_color(other, rb_color(parent));
rb_set_black(parent);
rb_set_black(other->right);
rbtree_left_rotate(root, parent);
node = root->node;
break;
}
}
else
{
other = parent->left;
if (rb_is_red(other))
{
// Case 1: x的兄弟w是红色的
rb_set_black(other);
rb_set_red(parent);
rbtree_right_rotate(root, parent);
other = parent->left;
}
if ((!other->left || rb_is_black(other->left)) &&
(!other->right || rb_is_black(other->right)))
{
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
rb_set_red(other);
node = parent;
parent = rb_parent(node);
}
else
{
if (!other->left || rb_is_black(other->left))
{
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
rb_set_black(other->right);
rb_set_red(other);
rbtree_left_rotate(root, other);
other = parent->left;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
rb_set_color(other, rb_color(parent));
rb_set_black(parent);
rb_set_black(other->left);
rbtree_right_rotate(root, parent);
node = root->node;
break;
}
}
}
if (node)
rb_set_black(node);
}
/*
* 删除结点
*
* 参数说明:
* tree 红黑树的根结点
* node 删除的结点
*/
void rbtree_delete(RBRoot *root, Node *node)
{
Node *child, *parent;
int color;
// 被删除节点的"左右孩子都不为空"的情况。
if ( (node->left!=NULL) && (node->right!=NULL) )
{
// 被删节点的后继节点。(称为"取代节点")
// 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
Node *replace = node;
// 获取后继节点
replace = replace->right;
while (replace->left != NULL)
replace = replace->left;
// "node节点"不是根节点(只有根节点不存在父节点)
if (rb_parent(node))
{
if (rb_parent(node)->left == node)
rb_parent(node)->left = replace;
else
rb_parent(node)->right = replace;
}
else
// "node节点"是根节点,更新根节点。
root->node = replace;
// child是"取代节点"的右孩子,也是需要"调整的节点"。
// "取代节点"肯定不存在左孩子!因为它是一个后继节点。
child = replace->right;
parent = rb_parent(replace);
// 保存"取代节点"的颜色
color = rb_color(replace);
// "被删除节点"是"它的后继节点的父节点"
if (parent == node)
{
parent = replace;
}
else
{
// child不为空
if (child)
rb_set_parent(child, parent);
parent->left = child;
replace->right = node->right;
rb_set_parent(node->right, replace);
}
replace->parent = node->parent;
replace->color = node->color;
replace->left = node->left;
node->left->parent = replace;
if (color == BLACK)
rbtree_delete_fixup(root, child, parent);
free(node);
return ;
}
if (node->left !=NULL)
child = node->left;
else
child = node->right;
parent = node->parent;
// 保存"取代节点"的颜色
color = node->color;
if (child)
child->parent = parent;
// "node节点"不是根节点
if (parent)
{
if (parent->left == node)
parent->left = child;
else
parent->right = child;
}
else
root->node = child;
if (color == BLACK)
rbtree_delete_fixup(root, child, parent);
free(node);
}
/*
* 删除键值为key的结点
*
* 参数说明:
* tree 红黑树的根结点
* key 键值
*/
void delete_rbtree(RBRoot *root, Type key)
{
Node *z, *node;
if ((z = search(root->node, key)) != NULL)
rbtree_delete(root, z);
}
/*
* 销毁红黑树
*/
static void rbtree_destroy(RBTree tree)
{
if (tree==NULL)
return ;
if (tree->left != NULL)
rbtree_destroy(tree->left);
if (tree->right != NULL)
rbtree_destroy(tree->right);
free(tree);
}
void destroy_rbtree(RBRoot *root)
{
if (root != NULL)
rbtree_destroy(root->node);
free(root);
}
/*
* 打印"红黑树"
*
* tree -- 红黑树的节点
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
static void rbtree_print(RBTree tree, Type key, int direction)
{
if(tree != NULL)
{
if(direction==0) // tree是根节点
printf("%2d(B) is root\n", tree->key);
else // tree是分支节点
printf("%2d(%s) is %2d's %6s child\n", tree->key, rb_is_red(tree)?"R":"B", key, direction==1?"right" : "left");
rbtree_print(tree->left, tree->key, -1);
rbtree_print(tree->right,tree->key, 1);
}
}
void print_rbtree(RBRoot *root)
{
if (root!=NULL && root->node!=NULL)
rbtree_print(root->node, root->node->key, 0);
}
/**
* C语言实现的红黑树(Red Black Tree)
*
* @author skywang
* @date 2013/11/18
*/
#define CHECK_INSERT 1 // "插入"动作的检测开关(0,关闭;1,打开)
#define CHECK_DELETE 1 // "删除"动作的检测开关(0,关闭;1,打开)
#define LENGTH(a) ( (sizeof(a)) / (sizeof(a[0])) )
void main()
{
int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
int i, ilen=LENGTH(a);
RBRoot *root=NULL;
root = create_rbtree();
printf("== 原始数据: ");
for(i=0; i<ilen; i++)
printf("%d ", a[i]);
printf("\n");
for(i=0; i<ilen; i++)
{
insert_rbtree(root, a[i]);
#if CHECK_INSERT
printf("== 添加节点: %d\n", a[i]);
printf("== 树的详细信息: \n");
print_rbtree(root);
printf("\n");
#endif
}
printf("== 前序遍历: ");
preorder_rbtree(root);
printf("\n== 中序遍历: ");
inorder_rbtree(root);
printf("\n== 后序遍历: ");
postorder_rbtree(root);
printf("\n");
if (rbtree_minimum(root, &i)==0)
printf("== 最小值: %d\n", i);
if (rbtree_maximum(root, &i)==0)
printf("== 最大值: %d\n", i);
printf("== 树的详细信息: \n");
print_rbtree(root);
printf("\n");
#if CHECK_DELETE
for(i=0; i<ilen; i++)
{
delete_rbtree(root, a[i]);
printf("== 删除节点: %d\n", a[i]);
if (root)
{
printf("== 树的详细信息: \n");
print_rbtree(root);
printf("\n");
}
}
#endif
destroy_rbtree(root);
}