红黑树的C语言实现

rbtree.h

#ifndef _RED_BLACK_TREE_H_
#define _RED_BLACK_TREE_H_

#define RED        0    // 红色节点
#define BLACK    1    // 黑色节点

typedef int Type;

// 红黑树的节点
typedef struct RBTreeNode{
    unsigned char color;        // 颜色(RED 或 BLACK)
    Type   key;                    // 关键字(键值)
    struct RBTreeNode *left;    // 左孩子
    struct RBTreeNode *right;    // 右孩子
    struct RBTreeNode *parent;    // 父结点
}Node, *RBTree;

// 红黑树的根
typedef struct rb_root{
    Node *node;
}RBRoot;

// 创建红黑树,返回"红黑树的根"!
RBRoot* create_rbtree();

// 销毁红黑树
void destroy_rbtree(RBRoot *root);

// 将结点插入到红黑树中。插入成功,返回0;失败返回-1。
int insert_rbtree(RBRoot *root, Type key);

// 删除结点(key为节点的值)
void delete_rbtree(RBRoot *root, Type key);


// 前序遍历"红黑树"
void preorder_rbtree(RBRoot *root);
// 中序遍历"红黑树"
void inorder_rbtree(RBRoot *root);
// 后序遍历"红黑树"
void postorder_rbtree(RBRoot *root);

// (递归实现)查找"红黑树"中键值为key的节点。找到的话,返回0;否则,返回-1。
int rbtree_search(RBRoot *root, Type key);
// (非递归实现)查找"红黑树"中键值为key的节点。找到的话,返回0;否则,返回-1。
int iterative_rbtree_search(RBRoot *root, Type key);

// 返回最小结点的值(将值保存到val中)。找到的话,返回0;否则返回-1。
int rbtree_minimum(RBRoot *root, int *val);
// 返回最大结点的值(将值保存到val中)。找到的话,返回0;否则返回-1。
int rbtree_maximum(RBRoot *root, int *val);

// 打印红黑树
void print_rbtree(RBRoot *root);

#endif

  

main.c

/**
 * C语言实现的红黑树(Red Black Tree)
 *
 * @author skywang
 * @date 2013/11/18
 */

#include <stdio.h>
#include <stdlib.h>
#include "rbtree.h"

#define rb_parent(r)   ((r)->parent)
#define rb_color(r) ((r)->color)
#define rb_is_red(r)   ((r)->color==RED)
#define rb_is_black(r)  ((r)->color==BLACK)
#define rb_set_black(r)  do { (r)->color = BLACK; } while (0)
#define rb_set_red(r)  do { (r)->color = RED; } while (0)
#define rb_set_parent(r,p)  do { (r)->parent = (p); } while (0)
#define rb_set_color(r,c)  do { (r)->color = (c); } while (0)

/*
 * 创建红黑树,返回"红黑树的根"!
 */
RBRoot* create_rbtree()
{
    RBRoot *root = (RBRoot *)malloc(sizeof(RBRoot));
    root->node = NULL;

    return root;
}

/*
 * 前序遍历"红黑树"
 */
static void preorder(RBTree tree)
{
    if(tree != NULL)
    {
        printf("%d ", tree->key);
        preorder(tree->left);
        preorder(tree->right);
    }
}
void preorder_rbtree(RBRoot *root) 
{
    if (root)
        preorder(root->node);
}

/*
 * 中序遍历"红黑树"
 */
static void inorder(RBTree tree)
{
    if(tree != NULL)
    {
        inorder(tree->left);
        printf("%d ", tree->key);
        inorder(tree->right);
    }
}

void inorder_rbtree(RBRoot *root) 
{
    if (root)
        inorder(root->node);
}

/*
 * 后序遍历"红黑树"
 */
static void postorder(RBTree tree)
{
    if(tree != NULL)
    {
        postorder(tree->left);
        postorder(tree->right);
        printf("%d ", tree->key);
    }
}

void postorder_rbtree(RBRoot *root)
{
    if (root)
        postorder(root->node);
}

/*
 * (递归实现)查找"红黑树x"中键值为key的节点
 */
static Node* search(RBTree x, Type key)
{
    if (x==NULL || x->key==key)
        return x;

    if (key < x->key)
        return search(x->left, key);
    else
        return search(x->right, key);
}
int rbtree_search(RBRoot *root, Type key)
{
    if (root)
        return search(root->node, key)? 0 : -1;
}

/*
 * (非递归实现)查找"红黑树x"中键值为key的节点
 */
static Node* iterative_search(RBTree x, Type key)
{
    while ((x!=NULL) && (x->key!=key))
    {
        if (key < x->key)
            x = x->left;
        else
            x = x->right;
    }

    return x;
}
int iterative_rbtree_search(RBRoot *root, Type key)
{
    if (root)
        return iterative_search(root->node, key) ? 0 : -1;
}

/* 
 * 查找最小结点:返回tree为根结点的红黑树的最小结点。
 */
static Node* minimum(RBTree tree)
{
    if (tree == NULL)
        return NULL;

    while(tree->left != NULL)
        tree = tree->left;
    return tree;
}

int rbtree_minimum(RBRoot *root, int *val)
{
    Node *node;

    if (root)
        node = minimum(root->node);

    if (node == NULL)
        return -1;

    *val = node->key;
    return 0;
}
 
/* 
 * 查找最大结点:返回tree为根结点的红黑树的最大结点。
 */
static Node* maximum(RBTree tree)
{
    if (tree == NULL)
        return NULL;

    while(tree->right != NULL)
        tree = tree->right;
    return tree;
}

int rbtree_maximum(RBRoot *root, int *val)
{
    Node *node;

    if (root)
        node = maximum(root->node);

    if (node == NULL)
        return -1;

    *val = node->key;
    return 0;
}

/* 
 * 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
 */
static Node* rbtree_successor(RBTree x)
{
    // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
    if (x->right != NULL)
        return minimum(x->right);

    // 如果x没有右孩子。则x有以下两种可能:
    // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
    // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
    Node* y = x->parent;
    while ((y!=NULL) && (x==y->right))
    {
        x = y;
        y = y->parent;
    }

    return y;
}
 
/* 
 * 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
 */
static Node* rbtree_predecessor(RBTree x)
{
    // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
    if (x->left != NULL)
        return maximum(x->left);

    // 如果x没有左孩子。则x有以下两种可能:
    // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
    // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
    Node* y = x->parent;
    while ((y!=NULL) && (x==y->left))
    {
        x = y;
        y = y->parent;
    }

    return y;
}

/* 
 * 对红黑树的节点(x)进行左旋转
 *
 * 左旋示意图(对节点x进行左旋):
 *      px                              px
 *     /                               /
 *    x                               y                
 *   /  \      --(左旋)-->           / \                #
 *  lx   y                          x  ry     
 *     /   \                       /  \
 *    ly   ry                     lx  ly  
 *
 *
 */
static void rbtree_left_rotate(RBRoot *root, Node *x)
{
    // 设置x的右孩子为y
    Node *y = x->right;

    // 将 “y的左孩子” 设为 “x的右孩子”;
    // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
    x->right = y->left;
    if (y->left != NULL)
        y->left->parent = x;

    // 将 “x的父亲” 设为 “y的父亲”
    y->parent = x->parent;

    if (x->parent == NULL)//修改红黑树的根节点
    {
        //tree = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
        root->node = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
    }
    else
    {
        if (x->parent->left == x) 
            x->parent->left = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
        else
            x->parent->right = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
    }
    
    // 将 “x” 设为 “y的左孩子”
    y->left = x;
    // 将 “x的父节点” 设为 “y”
    x->parent = y;
}

/* 
 * 对红黑树的节点(y)进行右旋转
 *
 * 右旋示意图(对节点y进行左旋):
 *            py                               py
 *           /                                /
 *          y                                x                  
 *         /  \      --(右旋)-->            /  \                     #
 *        x   ry                           lx   y  
 *       / \                                   / \                   #
 *      lx  rx                                rx  ry
 * 
 */
static void rbtree_right_rotate(RBRoot *root, Node *y)
{
    // 设置x是当前节点的左孩子。
    Node *x = y->left;

    // 将 “x的右孩子” 设为 “y的左孩子”;
    // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
    y->left = x->right;
    if (x->right != NULL)
        x->right->parent = y;

    // 将 “y的父亲” 设为 “x的父亲”
    x->parent = y->parent;

    if (y->parent == NULL) 
    {
        //tree = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
        root->node = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
    }
    else
    {
        if (y == y->parent->right)
            y->parent->right = x;    // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
        else
            y->parent->left = x;    // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
    }

    // 将 “y” 设为 “x的右孩子”
    x->right = y;

    // 将 “y的父节点” 设为 “x”
    y->parent = x;
}

/*
 * 红黑树插入修正函数
 *
 * 在向红黑树中插入节点之后(失去平衡),再调用该函数;
 * 目的是将它重新塑造成一颗红黑树。
 *
 * 参数说明:
 *     root 红黑树的根
 *     node 插入的结点        // 对应《算法导论》中的z
 */
static void rbtree_insert_fixup(RBRoot *root, Node *node)
{
    Node *parent, *gparent;

    // 若“父节点存在,并且父节点的颜色是红色”
    while ((parent = rb_parent(node)) && rb_is_red(parent))
    {
        gparent = rb_parent(parent);

        //若“父节点”是“祖父节点的左孩子”
        if (parent == gparent->left)
        {
            // Case 1条件:叔叔节点是红色
            {
                Node *uncle = gparent->right;
                if (uncle && rb_is_red(uncle))//没有节点进入该分支,如何构造?
                {
                    rb_set_black(uncle);
                    rb_set_black(parent);
                    rb_set_red(gparent);
                    node = gparent;
                    continue;
                }
            }

            // Case 2条件:叔叔是黑色,且当前节点是右孩子,叔叔不存在,也认为是黑色
            if (parent->right == node)//插入80节点时,先左旋,后右旋
            {
                Node *tmp;
                rbtree_left_rotate(root, parent);
                tmp = parent;
                parent = node;
                node = tmp;
            }

            // Case 3条件:叔叔是黑色,且当前节点是左孩子。
            rb_set_black(parent);//旋转前设置好颜色
            rb_set_red(gparent);//旋转前设置好颜色
            rbtree_right_rotate(root, gparent);
        } 
        else//若父节点是祖父节点的右孩子
        {
            // Case 1条件:叔叔节点是红色
            {
                Node *uncle = gparent->left;//当插入60时,调整颜色即可,调整颜色后不符合红黑树,递归进行
                if (uncle && rb_is_red(uncle))
                {
                    rb_set_black(uncle);
                    rb_set_black(parent);
                    rb_set_red(gparent);
                    node = gparent;
                    continue;//继续进行调整
                }
            }

            // Case 2条件:叔叔是黑色,且当前节点是左孩子,插入30时,先右旋,后左旋
            if (parent->left == node)
            {
                Node *tmp;
                rbtree_right_rotate(root, parent);
                tmp = parent;
                parent = node;
                node = tmp;
            }

            // Case 3条件:叔叔是黑色,且当前节点是右孩子。
            rb_set_black(parent);//旋转前设置好颜色
            rb_set_red(gparent);//旋转前设置好颜色
            rbtree_left_rotate(root, gparent);
        }
    }

    // 将根节点设为黑色
    rb_set_black(root->node);
}

/*
 * 添加节点:将节点(node)插入到红黑树中
 *
 * 参数说明:
 *     root 红黑树的根
 *     node 插入的结点        // 对应《算法导论》中的z
 */
static void rbtree_insert(RBRoot *root, Node *node)
{
    Node *y = NULL;
    Node *x = root->node;

    // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
    while (x != NULL)
    {
        y = x;
        if (node->key < x->key)
            x = x->left;
        else
            x = x->right;
    }
    rb_parent(node) = y;//找到父节点并把要插入节点的父节点的指针修改
	//修改父节点的子节点指针
    if (y != NULL)
    {
        if (node->key < y->key)
            y->left = node;                // 情况2:若“node所包含的值” < “y所包含的值”,则将node设为“y的左孩子”
        else
            y->right = node;            // 情况3:(“node所包含的值” >= “y所包含的值”)将node设为“y的右孩子” 
    }
    else
    {
        root->node = node;                // 情况1:若y是空节点,则将node设为根
    }

    // 2. 设置节点的颜色为红色
    node->color = RED;

    // 3. 将它重新修正为一颗二叉查找树
    rbtree_insert_fixup(root, node);
}

/*
 * 创建结点
 *
 * 参数说明:
 *     key 是键值。
 *     parent 是父结点。
 *     left 是左孩子。
 *     right 是右孩子。
 */
static Node* create_rbtree_node(Type key, Node *parent, Node *left, Node* right)
{
    Node* p;

    if ((p = (Node *)malloc(sizeof(Node))) == NULL)
        return NULL;
    p->key = key;
    p->left = left;
    p->right = right;
    p->parent = parent;
    p->color = BLACK; // 默认为黑色

    return p;
}

/* 
 * 新建结点(节点键值为key),并将其插入到红黑树中
 *
 * 参数说明:
 *     root 红黑树的根
 *     key 插入结点的键值
 * 返回值:
 *     0,插入成功
 *     -1,插入失败
 */
int insert_rbtree(RBRoot *root, Type key)
{
    Node *node;    // 新建结点

    // 不允许插入相同键值的节点。
    // (若想允许插入相同键值的节点,注释掉下面两句话即可!)
    if (search(root->node, key) != NULL)
        return -1;

    // 如果新建结点失败,则返回。
    if ((node=create_rbtree_node(key, NULL, NULL, NULL)) == NULL)
        return -1;

    rbtree_insert(root, node);

    return 0;
}

/*
 * 红黑树删除修正函数
 *
 * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
 * 目的是将它重新塑造成一颗红黑树。
 *
 * 参数说明:
 *     root 红黑树的根
 *     node 待修正的节点
 */
static void rbtree_delete_fixup(RBRoot *root, Node *node, Node *parent)
{
    Node *other;

    while ((!node || rb_is_black(node)) && node != root->node)
    {
        if (parent->left == node)
        {
            other = parent->right;
            if (rb_is_red(other))
            {
                // Case 1: x的兄弟w是红色的  
                rb_set_black(other);
                rb_set_red(parent);
                rbtree_left_rotate(root, parent);
                other = parent->right;
            }
            if ((!other->left || rb_is_black(other->left)) &&
                (!other->right || rb_is_black(other->right)))
            {
                // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                rb_set_red(other);
                node = parent;
                parent = rb_parent(node);
            }
            else
            {
                if (!other->right || rb_is_black(other->right))
                {
                    // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                    rb_set_black(other->left);
                    rb_set_red(other);
                    rbtree_right_rotate(root, other);
                    other = parent->right;
                }
                // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                rb_set_color(other, rb_color(parent));
                rb_set_black(parent);
                rb_set_black(other->right);
                rbtree_left_rotate(root, parent);
                node = root->node;
                break;
            }
        }
        else
        {
            other = parent->left;
            if (rb_is_red(other))
            {
                // Case 1: x的兄弟w是红色的  
                rb_set_black(other);
                rb_set_red(parent);
                rbtree_right_rotate(root, parent);
                other = parent->left;
            }
            if ((!other->left || rb_is_black(other->left)) &&
                (!other->right || rb_is_black(other->right)))
            {
                // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                rb_set_red(other);
                node = parent;
                parent = rb_parent(node);
            }
            else
            {
                if (!other->left || rb_is_black(other->left))
                {
                    // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                    rb_set_black(other->right);
                    rb_set_red(other);
                    rbtree_left_rotate(root, other);
                    other = parent->left;
                }
                // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                rb_set_color(other, rb_color(parent));
                rb_set_black(parent);
                rb_set_black(other->left);
                rbtree_right_rotate(root, parent);
                node = root->node;
                break;
            }
        }
    }
    if (node)
        rb_set_black(node);
}

/* 
 * 删除结点
 *
 * 参数说明:
 *     tree 红黑树的根结点
 *     node 删除的结点
 */
void rbtree_delete(RBRoot *root, Node *node)
{
    Node *child, *parent;
    int color;

    // 被删除节点的"左右孩子都不为空"的情况。
    if ( (node->left!=NULL) && (node->right!=NULL) ) 
    {
        // 被删节点的后继节点。(称为"取代节点")
        // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
        Node *replace = node;

        // 获取后继节点
        replace = replace->right;
        while (replace->left != NULL)
            replace = replace->left;

        // "node节点"不是根节点(只有根节点不存在父节点)
        if (rb_parent(node))
        {
            if (rb_parent(node)->left == node)
                rb_parent(node)->left = replace;
            else
                rb_parent(node)->right = replace;
        } 
        else 
            // "node节点"是根节点,更新根节点。
            root->node = replace;

        // child是"取代节点"的右孩子,也是需要"调整的节点"。
        // "取代节点"肯定不存在左孩子!因为它是一个后继节点。
        child = replace->right;
        parent = rb_parent(replace);
        // 保存"取代节点"的颜色
        color = rb_color(replace);

        // "被删除节点"是"它的后继节点的父节点"
        if (parent == node)
        {
            parent = replace;
        } 
        else
        {
            // child不为空
            if (child)
                rb_set_parent(child, parent);
            parent->left = child;

            replace->right = node->right;
            rb_set_parent(node->right, replace);
        }

        replace->parent = node->parent;
        replace->color = node->color;
        replace->left = node->left;
        node->left->parent = replace;

        if (color == BLACK)
            rbtree_delete_fixup(root, child, parent);
        free(node);

        return ;
    }

    if (node->left !=NULL)
        child = node->left;
    else 
        child = node->right;

    parent = node->parent;
    // 保存"取代节点"的颜色
    color = node->color;

    if (child)
        child->parent = parent;

    // "node节点"不是根节点
    if (parent)
    {
        if (parent->left == node)
            parent->left = child;
        else
            parent->right = child;
    }
    else
        root->node = child;

    if (color == BLACK)
        rbtree_delete_fixup(root, child, parent);
    free(node);
}

/* 
 * 删除键值为key的结点
 *
 * 参数说明:
 *     tree 红黑树的根结点
 *     key 键值
 */
void delete_rbtree(RBRoot *root, Type key)
{
    Node *z, *node; 

    if ((z = search(root->node, key)) != NULL)
        rbtree_delete(root, z);
}

/*
 * 销毁红黑树
 */
static void rbtree_destroy(RBTree tree)
{
    if (tree==NULL)
        return ;

    if (tree->left != NULL)
        rbtree_destroy(tree->left);
    if (tree->right != NULL)
        rbtree_destroy(tree->right);

    free(tree);
}

void destroy_rbtree(RBRoot *root)
{
    if (root != NULL)
        rbtree_destroy(root->node);

    free(root);
}

/*
 * 打印"红黑树"
 *
 * tree       -- 红黑树的节点
 * key        -- 节点的键值 
 * direction  --  0,表示该节点是根节点;
 *               -1,表示该节点是它的父结点的左孩子;
 *                1,表示该节点是它的父结点的右孩子。
 */
static void rbtree_print(RBTree tree, Type key, int direction)
{
    if(tree != NULL)
    {
        if(direction==0)    // tree是根节点
            printf("%2d(B) is root\n", tree->key);
        else                // tree是分支节点
            printf("%2d(%s) is %2d's %6s child\n", tree->key, rb_is_red(tree)?"R":"B", key, direction==1?"right" : "left");

        rbtree_print(tree->left, tree->key, -1);
        rbtree_print(tree->right,tree->key,  1);
    }
}

void print_rbtree(RBRoot *root)
{
    if (root!=NULL && root->node!=NULL)
        rbtree_print(root->node, root->node->key, 0);
}

/**
 * C语言实现的红黑树(Red Black Tree)
 *
 * @author skywang
 * @date 2013/11/18
 */


#define CHECK_INSERT 1    // "插入"动作的检测开关(0,关闭;1,打开)
#define CHECK_DELETE 1    // "删除"动作的检测开关(0,关闭;1,打开)
#define LENGTH(a) ( (sizeof(a)) / (sizeof(a[0])) )

void main()
{
    int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
    int i, ilen=LENGTH(a);
    RBRoot *root=NULL;

    root = create_rbtree();
    printf("== 原始数据: ");
    for(i=0; i<ilen; i++)
        printf("%d ", a[i]);
    printf("\n");

    for(i=0; i<ilen; i++)
    {
        insert_rbtree(root, a[i]);
#if CHECK_INSERT
        printf("== 添加节点: %d\n", a[i]);
        printf("== 树的详细信息: \n");
        print_rbtree(root);
        printf("\n");
#endif
    }

    printf("== 前序遍历: ");
    preorder_rbtree(root);

    printf("\n== 中序遍历: ");
    inorder_rbtree(root);

    printf("\n== 后序遍历: ");
    postorder_rbtree(root);
    printf("\n");

    if (rbtree_minimum(root, &i)==0)
        printf("== 最小值: %d\n", i);
    if (rbtree_maximum(root, &i)==0)
        printf("== 最大值: %d\n", i);
    printf("== 树的详细信息: \n");
    print_rbtree(root);
    printf("\n");

#if CHECK_DELETE
    for(i=0; i<ilen; i++)
    {
        delete_rbtree(root, a[i]);

        printf("== 删除节点: %d\n", a[i]);
        if (root)
        {
            printf("== 树的详细信息: \n");
            print_rbtree(root);
            printf("\n");
        }
    }
#endif

    destroy_rbtree(root);
}

  

 

转载于:https://www.cnblogs.com/cthon/p/9281677.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值