大数据模块开发之数据预处理

1. 主要目的
过滤“不合规”数据,清洗无意义的数据
格式转换和规整
根据后续的统计需求,过滤分离出各种不同主题(不同栏目path)的基础数据。
2. 实现方式
开发一个mr程序WeblogPreProcess(内容太长,见工程代码)

public class WeblogPreProcess {

static class WeblogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> {

Text k = new Text();

NullWritable v = NullWritable.get();

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

String line = value.toString();

WebLogBean webLogBean = WebLogParser.parser(line);

//        WebLogBean productWebLog = WebLogParser.parser2(line);

//        WebLogBean bbsWebLog = WebLogParser.parser3(line);

//        WebLogBean cuxiaoBean = WebLogParser.parser4(line);

if (!webLogBean.isValid())

return;

k.set(webLogBean.toString());

context.write(k, v);

//        k.set(productWebLog);

//        context.write(k, v);

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

job.setJarByClass(WeblogPreProcess.class);

job.setMapperClass(WeblogPreProcessMapper.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}

}

l 运行mr对数据进行预处理

hadoop jar weblog.jar cn.itcast.bigdata.hive.mr.WeblogPreProcess /weblog/input /weblog/preout
3. 点击流模型数据梳理
由于大量的指标统计从点击流模型中更容易得出,所以在预处理阶段,可以使用mr程序来生成点击流模型的数据。
3.1. 点击流模型pageviews表
Pageviews表模型数据生成, 详细见:ClickStreamPageView.java
大数据模块开发之数据预处理
此时程序的输入数据源就是上一步骤我们预处理完的数据。经过此不处理完成之后的数据格式为:
大数据模块开发之数据预处理
3.2. 点击流模型visit信息表
注:“一次访问”=“N次连续请求”
直接从原始数据中用hql语法得出每个人的“次”访问信息比较困难,可先用mapreduce程序分析原始数据得出“次”信息数据,然后再用hql进行更多维度统计
用MR程序从pageviews数据中,梳理出每一次visit的起止时间、页面信息
详细代码见工程:ClickStreamVisit.java
大数据模块开发之数据预处理

转载于:https://blog.51cto.com/13587708/2285707

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值