前言
双变量函数不等式,是函数与导数模块中的一个难点问题;处理双变量函数的总体策略是减少变量的个数,降低求解难度,为达成这一目的,常常采用①花开两朵,先表一支。而且安排在前边先处理的往往是两个函数中不含有参数的函数;②两个变量作比得到一个变量,如\(\cfrac{x_1}{x_2}=t\);③换元法等方法。
转化依据
- 一端为参数,另一端为函数的类型:
①自然语言
:\(A\ge f(x)\)在区间\([a,b]\)上恒成立, $\Leftrightarrow $ 符号语言
:\(A\ge f(x)_{max}\);
自然语言
:\(A\leq f(x)\)在区间\([a,b]\)上恒成立, $\Leftrightarrow $ 符号语言
:\(A\leq f(x)_{min}\);
②自然语言
:\(A\ge f(x)\)在区间\([a,b]\)上能成立, $\Leftrightarrow $ 符号语言
:\(A\ge f(x)_{min}\);
自然语言
:\(A\leq f(x)\)在区间\([a,b]\)上能成立, $\Leftrightarrow $ 符号语言
:\(A\leq f(x)_{max}\);
- 两端都是函数,双变量类型:
③符号语言
:对\(\forall x_1\in [2,3]\),\(\exists x_2\in [4,5]\),满足\(f(x_1)\ge g(x_2)\);$\Leftrightarrow $ 符号语言
:\(f(x_1)_{min}\ge g(x_2)_{min}\);
④符号语言
:对\(\forall x_1\in [2,3]\),\(\forall x_2\in [4,5]\),满足\(f(x_1)\ge g(x_2)\);$\Leftrightarrow $ 符号语言
:\(f(x_1)_{min}\ge g(x_2)_{max}\);
⑤符号语言
:对\(\exists x_1\in [2,3]\),\(\exists x_2\in [4,5]\),满足\(f(x_1)\ge g(x_2)\);$\Leftrightarrow $ 符号语言
:\(f(x_1)_{max}\ge g(x_2)_{min}\);
⑥符号语言
:对\(\exists x_1\in [2,3]\),\(\forall x_2\in [4,5]\),满足\(f(x_1)\ge g(x_2)\);$\Leftrightarrow $ 符号语言
:\(f(x_1)_{max}\ge g(x_2)_{max}\);
- 两端都是函数,单变量类型:
⑦符号语言
:对\(\forall x\in [2,3]\),都满足\(f(x)\ge g(x)\);$\Leftrightarrow $ 符号语言
:\([f(x)-g(x)]_{min}\ge 0\);
错误转化:\(f(x)_{min}\ge g(x)_{max}\),反例代表如:\(e^x\ge x+1\);
⑧符号语言
:对\(\forall x\in [2,3]\),都满足\(f(x)\leq g(x)\);$\Leftrightarrow $ 符号语言
:\([f(x)-g(x)]_{max}\leq 0\);
错误转化:\(f(x)_{max}\leq g(x)_{min}\),反例代表如:\(x+1\leq e^x\);
易错之处
由于涉及到的函数多,自变量多,在变形转化过程中,很容易出错;最容易出错的地方是,在两边同乘以负数时不等号要变号,这时候容易将恒成立问题错误的转化为能成立,将能成立问题错误的转化为恒成立问题,避免错误的策略是,变形过程中原本是恒(能)成立问题,那它一直应该是恒(能)成立,依照这一点就不容易出错;
典例剖析
例1已知\(f(x)=lnx-\cfrac{x}{4}+\cfrac{3}{4x}\),\(g(x)=-x^2-2ax+4\),若对任意的\(x_1\in (0,2]\),存在\(x_2\in[1,2]\),使得\(f(x_1)\ge g(x_2)\)成立,则