双变量函数问题

本文探讨了双变量函数不等式的问题,提供了一种处理策略,即通过减少变量来降低求解难度。文章详细介绍了转化依据,包括恒成立和能成立问题的转化规则,并举例说明了易错之处和解决方法。通过典例剖析,展示了如何运用这些策略解决具体函数问题,涉及了参数分离、函数单调性分析和变量集中等技巧。
摘要由CSDN通过智能技术生成

前言

双变量函数不等式,是函数与导数模块中的一个难点问题;处理双变量函数的总体策略是减少变量的个数,降低求解难度,为达成这一目的,常常采用①花开两朵,先表一支。而且安排在前边先处理的往往是两个函数中不含有参数的函数;②两个变量作比得到一个变量,如\(\cfrac{x_1}{x_2}=t\);③换元法等方法。

转化依据

  • 一端为参数,另一端为函数的类型:

自然语言\(A\ge f(x)\)在区间\([a,b]\)上恒成立, $\Leftrightarrow $ 符号语言\(A\ge f(x)_{max}\)

自然语言\(A\leq f(x)\)在区间\([a,b]\)上恒成立, $\Leftrightarrow $ 符号语言\(A\leq f(x)_{min}\)

自然语言\(A\ge f(x)\)在区间\([a,b]\)上能成立, $\Leftrightarrow $ 符号语言\(A\ge f(x)_{min}\)

自然语言\(A\leq f(x)\)在区间\([a,b]\)上能成立, $\Leftrightarrow $ 符号语言\(A\leq f(x)_{max}\)

  • 两端都是函数,双变量类型:

符号语言:对\(\forall x_1\in [2,3]\)\(\exists x_2\in [4,5]\),满足\(f(x_1)\ge g(x_2)\);$\Leftrightarrow $ 符号语言\(f(x_1)_{min}\ge g(x_2)_{min}\)

符号语言:对\(\forall x_1\in [2,3]\)\(\forall x_2\in [4,5]\),满足\(f(x_1)\ge g(x_2)\);$\Leftrightarrow $ 符号语言\(f(x_1)_{min}\ge g(x_2)_{max}\)

符号语言:对\(\exists x_1\in [2,3]\)\(\exists x_2\in [4,5]\),满足\(f(x_1)\ge g(x_2)\);$\Leftrightarrow $ 符号语言\(f(x_1)_{max}\ge g(x_2)_{min}\)

符号语言:对\(\exists x_1\in [2,3]\)\(\forall x_2\in [4,5]\),满足\(f(x_1)\ge g(x_2)\);$\Leftrightarrow $ 符号语言\(f(x_1)_{max}\ge g(x_2)_{max}\)

  • 两端都是函数,单变量类型:

符号语言:对\(\forall x\in [2,3]\),都满足\(f(x)\ge g(x)\);$\Leftrightarrow $ 符号语言\([f(x)-g(x)]_{min}\ge 0\)

错误转化:\(f(x)_{min}\ge g(x)_{max}\),反例代表如:\(e^x\ge x+1\)

符号语言:对\(\forall x\in [2,3]\),都满足\(f(x)\leq g(x)\);$\Leftrightarrow $ 符号语言\([f(x)-g(x)]_{max}\leq 0\)

错误转化:\(f(x)_{max}\leq g(x)_{min}\),反例代表如:\(x+1\leq e^x\)

易错之处

由于涉及到的函数多,自变量多,在变形转化过程中,很容易出错;最容易出错的地方是,在两边同乘以负数时不等号要变号,这时候容易将恒成立问题错误的转化为能成立,将能成立问题错误的转化为恒成立问题,避免错误的策略是,变形过程中原本是恒(能)成立问题,那它一直应该是恒(能)成立,依照这一点就不容易出错;

典例剖析

例1已知\(f(x)=lnx-\cfrac{x}{4}+\cfrac{3}{4x}\)\(g(x)=-x^2-2ax+4\),若对任意的\(x_1\in (0,2]\),存在\(x_2\in[1,2]\),使得\(f(x_1)\ge g(x_2)\)成立,则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值